• Title/Summary/Keyword: flammable materials

Search Result 134, Processing Time 0.025 seconds

Measurement and Prediction of Combustion Properties of n-Phenol (페놀의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Journal of Hazardous Materials
    • /
    • v.6 no.2
    • /
    • pp.23-29
    • /
    • 2018
  • The fire and explosion properties necessary for waste, safe storage, transport, process design and operation of handling flammable substances are lower explosion limits(LEL), upper explosion limits(UEL), flash point, AIT( minimum autoignition temperature or spontaneous ignition temperature), fire point etc., An accurate knowledge of the combustion properties is important in developing appropriate prevention and control measures fire and explosion protection in chemical plants. In order to know the accuracy of data in MSDSs(material safety data sheets), the flash point of phenol was measured by Setaflash, Pensky-Martens, Tag, and Cleveland testers. And the AIT of phenol was measured by ASTM 659E apparatus. The explosion limits of phenol was investigated in the reference data. The flash point of phenol by using Setaflash and Pensky-Martens closed-cup testers were experimented at $75^{\circ}C$ and $81^{\circ}C$, respectively. The flash points of phenol by Tag and Cleveland open cup testers were experimented at $82^{\circ}C$ and $89^{\circ}C$, respectively. The AIT of phenol was experimented at $589^{\circ}C$. The LEL and UEL calculated by using Setaflash lower and upper flash point value were calculated as 1.36vol% and 8.67vol%, respectively. By using the relationship between the spontaneous ignition temperature and the ignition delay time proposed, it is possible to predict the ignition delay time at different temperatures in the handling process of phenol.

Humidity Dependence Removal Technology in Oxide Semiconductor Gas Sensors (산화물 반도체 가스 센서의 습도 의존성 제거 기술)

  • Jiho Park;Ji-Wook Yoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.347-357
    • /
    • 2024
  • Oxide semiconductor gas sensors are widely used for detecting toxic, explosive, and flammable gases due to their simple structure, cost-effectiveness, and potential integration into compact devices. However, their reliable gas detection is hindered by a longstanding issue known as humidity dependence, wherein the sensor resistance and gas response change significantly in the presence of moisture. This problem has persisted since the inception of oxide semiconductor gas sensors in the 1960s. This paper explores the root causes of humidity dependence in oxide semiconductor gas sensors and presents strategies to address this challenge. Mitigation strategies include functionalizing the gas-sensing material with noble metal/transition metal oxides and rare-earth/rare-earth oxides, as well as implementing a moisture barrier layer to prevent moisture diffusion into the gas-sensing film. Developing oxide semiconductor gas sensors immune to humidity dependence is expected to yield substantial socioeconomic benefits by enabling medical diagnosis, food quality assessment, environmental monitoring, and sensor network establishment.

Experimental Study on Ignition and Explosion Hazard by Measuring the Amount of Non-volatile (NVR) and Explosion Limit of Biodiesel Mixture (바이오디젤 혼합물의 가열잔분측정과 폭발한계 측정을 통한 발화 및 폭발위험성에 대한 실험적인 연구)

  • Kim, Ju Suk;Koh, Jae-Sun
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.182-193
    • /
    • 2022
  • Purpose: By measuring and evaluating the risk of biodiesel through non-volatile residue (NVR) and flash point and explosion limit measurement at a specific temperature according to ASTM test standards, the risk of chemical fire causative substances is identified and a universal evaluation method By derivation and securing the risk-related data of the material, it can be used for the identification and analysis of the cause of the fire, and it can be applied to the risk assessment of other chemical substances Method: In order to measure the risk of biodiesel, it was measured using the non-volatile residue(NVR) measurement method, which measures how much flammable liquid is generated at a specific temperature. Heating was tested by applying KS M 5000: 2009 Test Method 4111. In addition, the flash point was measured using the method specified in ASTM E659-782005, and the energy supply method was measured using the constant temperature method. In addition, the explosion limit measurement was conducted in accordance with ASTM E 681-04 「Standard test method for concentration limits of flammability of chemicals(Vapors and gases)」 test standard. Result: As a result of checking the amount of combustible liquid by the non-volatile residue (NVR)measurement method, the non-volatile residue(NVR) of general diesel when left at 105±2℃ for 3 hours was about 30% (70% of volatile matter) and about 4% of biodiesel. In addition, similar results were obtained for the non-volatile residue(NVR)heating temperature of 150±2℃, 3 hours and 200±2℃ for 1 hour, and white smoke was generated at 200℃ or higher. In addition, similar values were obtained as a result of experimentally checking the explosion (combustion) limits of general diesel, general diesel containing 20% biodiesel, and 100% biodiesel. Therefore, it was confirmed that the flammability risk did not significantly affect the explosion risk. Conclusion: The results of this study suggested the risk judgment criteria for mixtures through experimental research on flammable mixtures for the purpose of securing the effectiveness, reliability, and reproducibility of the details of the criteria for determining dangerous substances in the existing Dangerous Materials Safety Management Act. It will be possible to provide reference data for the judgment criteria for flammable liquids that are regulated in the field. In addition, if the know-how for each test method is accumulated through this study, it is expected that it will be used as basic data in the research on risk assessment of dangerous substances and as a basis for research on the determination of dangerous substances.

A Study on the Assessment of Hazardous Properties of the Oxidizing Solids (산화성고체의 위험성평가에 관한 연구)

  • Lee, Bong-Woo;Park, Chul-Woo;Song, Haak
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.9-16
    • /
    • 2009
  • Chemical products have had an favorable influence on our everyday life, and contributed very much to the development of human culture. According to the rapid change of industry and the development of scientific technique the using chemical products are increasing more and more. Chemical products can have any hazardous property such as flammability or explosiveness. There are occurring many accidents in the international trade due to the different classification and labelling of chemicals produced in various countries. The main purpose of this work is the development of global standard test methods for the chemicals, and the classification and labelling in building block approach by means of the basic technical data. Oxidizing solids, combustible solids, spontaneously combustible materials, water-prohibitive materials, flammable liquids, self-reactive materials and oxidizing liquids have been classification The first Experiment have tested Oxidizing solids of third five. The results have been classified according to the hazard material safety regulation and the UN regulation, and summarized in a data-base.

Spectral Analysis Method for Classification of Liquid Characteristics (액체의 특성 분류를 위한 스펙트럼 분석 방법)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2206-2212
    • /
    • 2016
  • It is necessary to find characteristic phenomena related with permittivity differences for classification of liquid characteristics. If these phenomena can be remotely detected and characteristics can be extracted, it will be very useful in finding flammable liquid materials and classifying substances of these liquids. Therefore, in this paper, reflection and transmitted signals were analyzed from three receiving antennas with one transmitting antenna using wideband electromagnetic wave signals. Frequency response characteristics of reflected or transmitted signals are different according to characteristics of liquid materials. However, conventional FFT methods cannot be applied due to problems of low resolution caused by data windowing distortion. To minimize these problems, eigenvector analysis method was applied for high resolution spectrum estimation of received signals. From these results, it can be shown that classification of many kinds of liquids are possible using peak frequencies and corresponding peak power values of spectrum estimates obtained from various liquid materials.

Study on the Excellent Heat Resistance Organic-Inorganic Hybrid Flame Retardant (내열성이 우수한 유-무기 하이브리드 방염제에 관한 연구)

  • Cho, Kyeong-Rae;Lee, Sung-Eun;Lee, Chun-Ha;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.67-72
    • /
    • 2016
  • The development of flame retardants aims to prevent the spread of fire and reduce the casualties caused by flammable and toxic gases generated during the combustion of building materials used in the interiors of multi-use facilities. Flame material application provides flame resistance to a silica sol in an organic-inorganic hybrid material by flame retardant adhesive or coating by producing a sol-gel method. The conventional flame retardant materials, non-flame retardant material is applied with Halogen freeway. In particular, the basic physical properties of conventional adhesive coating improves the heat resistance, enhances the durability fire and heat, and expands the halogen free flame retardant of building materials.

Analysis of Vertical Combustion and Carbonization Patterns of Floor Materials When Using a Needle Flame (니들 플레임에 의한 바닥재의 수직 연소 및 탄화 패턴의 해석에 관한 연구)

  • Park, Min-Su;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.101-106
    • /
    • 2020
  • This study analyzed flame growth characteristics and carbonization patterns when floor materials were burned vertically using a needle flame produced for this study. It was found that PVC flooring was fire retardant and the area under direct flame contracted inward. Vertical combustion causes solidification in the form of a lump at the bottom and also generates soot in a pattern that progresses upwards. This study found that laminated flooring exhibited no fire retarding characteristics and that the laminated layer of its upper surface was destroyed by fire, causing irregular delamination. The carbonization ranges at the left and right sides were determined to be symmetrical. A vertical combustion test of a sample carpet showed that it exhibited no fire-retarding characteristics. It was observed that if heat accumulated in the carpet, the flame formed an ascending air current, and that when flammable materials were present around the flame, they further accelerated the diffusion of the flame. The carbonization pattern at the carpet surface exposed to direct flame revealed that the carpet surface had melted and had flown downwards and that many tiny holes formed on it.

An Analysis of the Effects of Energy Saving in Connection with Transformer Loss (변압기 손실에 따른 에너지절감 효과 비교 분석)

  • Choi, In-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.291-294
    • /
    • 2007
  • Countries in the world are setting up policies to implement anti-global warning measures to actively cope with the Agreement on Climate Change. Rising problems related to energy and environment prompted research and development efforts to highly efficient electric instrument and environmentally friendly products to secure resources and save energy Korea's high dependency on imported energy and its lack in natural resources make it urgently necessary to develop energy efficient instrument and equipment that can save energy. Every household now uses a transformer, which is very important instrument among others. A variety of technologies to manufacture transformers are currently used along with efforts to develop new materials. Development nit of high efficient transformers is called for by the time and has direct economic impact on suppliers and consumers. In addition, it is desirable to install a transformer that is trustworthy, secure, low on loss, anti-incident capable, small, anti-flammable, environmentally friendly, cost-efficient high-frequency resistant and easy for maintenance. To do this, it is necessary to look deeper into a highly efficient transformer that can save energy. This paper will discuss the types and characteristics of various transformers and propose ways to save energy and raise efficiency tv analyzing a environmentally friendly amorphous transformer.

  • PDF

Numerical Analysis of the Extinction and $NO_x$ Emission in Methane/Air Premixed Flame by Hydrogen Addition (메탄/공기 예혼합화염에서의 수소첨가에 의한 소염 및 $NO_x$ 발생특성에 관한 수치해석)

  • Cho, Eun-Seong;Chung, Suk-Ho;Ahn, Kook-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.75-81
    • /
    • 2006
  • Lean premixed combustion is a well known method for low $NO_x$ gas turbine combustor. But lean combustion is usually accompanied by flame instability. To overcome this problem, the hydrogen ($H_2$) was added to main fuel methane to increase flammable limit. In this paper, the effects of hydrogen addition on lean premixed combustion of methane ($CH_4$) were investigated numerically. Results showed that the extinction stretch rate increases and the extinction temperature constant with relatively small amount of $H_2$ addition. The flame temperature and NO emission increase with $H_2$ addition at the same stretch rate and equivalence ratio but it could increase the range of lean extinction and extinction equivalence ratio limit. Eventually, the $H_2$ addition case showed almost same or lower NO emission than no addictive $CH_4$ case in the extinction condition.

Parameter Analysis of the Damage Area and the Financial Loss by the Gas Release Accident at Pressure Vessels (압력용기에서 가스 누출사고에 의한 피해지역 및재정적 손실의 매개변수 분석)

  • Kim, Bong-Hoon;Lee, Hern-Chang;Choi, Jae-Uk
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.42-49
    • /
    • 2011
  • To achieve the safety management of an industry by using practical consequence analysis, parameters affecting damage area and financial loss by gas release accident were analyzed at pressure vessels containing flammable gas. As a result, the total financial loss cost was largely effected by the business interruption cost, and it was considered for equipment type and materials, process properties, and circumstances. Also, the consequences of the financial loss must be practically used more than the consequences of the damage area in industry.