• Title/Summary/Keyword: flammability limit

Search Result 74, Processing Time 0.023 seconds

The Effects of CIF$_3$and F$_2$on the Flammability Limit of H$_2$ (H$_2$의 연소한계에 미치는 F$_2$와 CIF$_3$의 영향)

  • ;H.Ohtani;Y.Uehara
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.3
    • /
    • pp.53-59
    • /
    • 1994
  • Hydrogen(H$_2$) is used in the semiconductor industries, and some oxidizing gases such as fluoride(F$_2$) and chlorine trifluoride(CIF$_3$) are also used. As F$_2$and CIF$_3$are highly oxidizing gases, it were supposed to react vigorously with H$_2$. In this study, the flammability limit of F$_2$/$H_2$/Ar and CIF$_3$/$H_2$/Ar mixtures were investigated experimentally. As a result, it was found that the diluted F$_2$gas could be spontaneously ignited as compared to CIF$_3$mixture gas while being mixed with the diluted H$_2$gas. However, CIF$_3$diluted gas was not able to ignite spontaneously except for an electric spark. And the combustion characteristics and reaction kinetics were shown at the different diluted gases by the flammability diagram analyses between the F$_2$/$H_2$/Ar and CIF$_3$/$H_2$/Ar.

  • PDF

Stabilization of Inert-Gas-Diluted Co-Flow Diffusion Flame by a Pilot Flame (불활성기체로 희석된 동축류 확산화염의 파일럿화염에 의한 안정화)

  • Ahn, Taekook;Lee, Wonnam;Park, Sunho
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.4
    • /
    • pp.19-25
    • /
    • 2015
  • An experimental study was conducted to find the effect of a pilot flame on the flammability of inert-gas-diluted methane and propane. The diffusion pilot flame was formed with propane at the innermost nozzle of a concentric triple co-flow burner. The main diffusion flame was formed with nitrogen-diluted methane or propane at the outermost nozzle of the burner. An air flow was located in-between. The results showed that the existence of the pilot flame helped stabilizing the main flame even at the flammability limit concentration of nitrogen-diluted fuel. The co-flow burner generated re-circulation zones and local variation of equivalence ratio depending on the flow rates of the reactants, which are known to help flame stabilization. Hot-wire experiments confirmed that both heating of the reactants and supplying of active chemical species by the pilot flame contributed to stabilization of the main flame. The results of this study would suggest a design concept for an efficient SVRU system that minimizes the emission of unburned hydrocarbon fuel from ship fuel tanks.

A flammability limit model for hydrogen-air-diluent mixtures based on heat transfer characteristics in flame propagation

  • Jeon, Joongoo;Choi, Wonjun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1749-1757
    • /
    • 2019
  • Predicting lower flammability limits (LFL) of hydrogen has become an ever-important task for safety of nuclear industry. While numerous experimental studies have been conducted, LFL results applicable for the harsh environment are still lack of information. Our aim is to develop a calculated non-adiabatic flame temperature (CNAFT) model to better predict LFL of hydrogen mixtures in nuclear power plant. The developed model is unique for incorporating radiative heat loss during flame propagation using the CNAFT coefficient derived through previous studies of flame propagation. Our new model is more consistent with the experimental results for various mixtures compared to the previous model, which relied on calculated adiabatic flame temperature (CAFT) to predict the LFL without any consideration of heat loss. Limitation of the previous model could be explained clearly based on the CNAFT coefficient magnitude. The prediction accuracy for hydrogen mixtures at elevated initial temperatures and high helium content was improved substantially. The model reliability was confirmed for $H_2-air$ mixtures up to $300^{\circ}C$ and $H_2-air-He$ mixtures up to 50 vol % helium concentration. Therefore, the CNAFT model developed based on radiation heat loss is expected as the practical method for predicting LFL in hydrogen risk analysis.

Prediction of Upper Flammability Limit of Paraffinic Hydrocarbons by Numerical Simulation (수치모사에 의한 파라핀족 탄화수소의 연소상한계의 예측)

  • 하동명
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.3
    • /
    • pp.50-55
    • /
    • 1993
  • A new model for predicting upper flammability limits( UFL ) of paraffinic hydrocarbons is developed, based on statistics and numerical simulation. With the proposed model, UFL have been calculated for 24 compounds, and when compared with experimental data, this model produced average percent error of 2.96%. When compared to established methods published by Spakowski and Zabetakis, this model produced more accurate results.

  • PDF

Effect of Acoustical Excitation and Flame Stabilizer on a Diffusion Flame Characteristics (음향가진과 보염기형상이 확산화염의 특성에 미치는 영향)

  • Jeon, C.H.;Chang, Y.J.
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • Lots of techniques are adopted for a flame stabilization and a high-load combustion. But the techniques being used were passive control method which have to change combustor shape like pilot flame, flame stabilizer, pressure profile, etc. Active control method which is not necessary to transform its shape is employed. Acoustical excitation is broadly used for its convenience in changing frequency and intensity. Both acoustical excitation and flame stabilizers were adopted to study their relationship. So, we investigated flammability limits. Flame visualization. And mean temperature in the condition of various frequencies, intensities, and flame stabilizers. As a consequence, flammability limit were advanced in acoustically excited flame at some frequencies. Coherent structure was extended to the downstream region through acoustical excitation and a size of vortice was curtailed. Also width of recirculation zone was magnified. In addition, Effects of acoustical excitation was stood out at 25mm flame stabilizer rather than another ones.

  • PDF

Utilization and Visualization of Turbulent Partially-premixed Flame for Combustion of Inert-gas-diluted VOC (유증기 연소처리를 위한 난류 부분예혼합화염의 활용 및 유동장 가시화)

  • Ahn, Taekook;Nam, Younwoo;Park, Sunho
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.193-196
    • /
    • 2015
  • Combustion of low concentration VOC in inert gas around the flammability limit has been experimentally studied. Streams of nitrogen and propane mixture with various compositions and flow conditions were treated by a turbulent partially-premixed pilot flame. HC and CO contents in exhaust gas measured and the flow patterns were visualized. The results suggested that there exists an optimal mixture velocity range for efficient combustion treatment for each flow condition and composition of the mixture.

  • PDF

Flow Characteristics of Propane Premixed Flame on AC Electric Field (교류 전기장 인가에 따른 프로판 예혼합 화염의 유동 특성)

  • Boyun Kim;Minseok Kim;Taehun Kim;Ilsong Kweon;Hyemin Kim
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.38-44
    • /
    • 2024
  • This study investigates the flow characteristics of propane-air premixed flames on AC electric field using the Schlieren method. A voltage was applied to the ring electrode and the burner was grounded to form an electric field, and the applied voltage was fixed at 16 kV (Vpp). Results show that under the application of AC electric fields, flow around the flame oscillated only at frequencies below 50 Hz, and no oscillation was observed above this frequency range. Flame height oscillated with frequency in the range of 25 to 300 Hz, with frequency doubling observed in the range of 25 to 150 Hz. The flammability limit increased with frequency up to 250 Hz, but in the high-frequency range above 250 Hz, the flammability limit did not increased and converged.

Discussion of the edge flame structure at the near flammability limits (가연한계 영역에서의 에지 화염 구조 및 고찰)

  • Lee, Min Jung;Jung, Yongjin;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.245-246
    • /
    • 2015
  • In this study, the structure of a edge flame near the flammability limits was explored through several paths approaching the combustion limits of a non-premixed flame: i.e., increase of fuel dilution ratio (FDR), reduction of mean flow velocity and variation of gravity effect. As a result, a unique interesting flame structure was discovered; i.e., a diffusion flame branch was enclosed by two asymmetric premixed flame branches. These structures have been compared for various fuels. Conclusively, each fuel has different flame structure and the meaning of this structure was discussed concerned about our understanding of laminar flame structures.

  • PDF

Improved prediction model for H2/CO combustion risk using a calculated non-adiabatic flame temperature model

  • Kim, Yeon Soo;Jeon, Joongoo;Song, Chang Hyun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2836-2846
    • /
    • 2020
  • During severe nuclear power plant (NPP) accidents, a H2/CO mixture can be generated in the reactor pressure vessel by core degradation and in the containment as well by molten corium-concrete interaction. In spite of its importance, a state-of-the-art methodology predicting H2/CO combustion risk relies predominantly on empirical correlations. It is therefore necessary to develop a proper methodology for flammability evaluation of H2/CO mixtures at ex-vessel phases characterized by three factors: CO concentration, high temperature, and diluents. The developed methodology adopted Le Chatelier's law and a calculated non-adiabatic flame temperature model. The methodology allows the consideration of the individual effect of the heat transfer characteristics of hydrogen and carbon monoxide on low flammability limit prediction. The accuracy of the developed model was verified using experimental data relevant to ex-vessel phase conditions. With the developed model, the prediction accuracy was improved substantially such that the maximum relative prediction error was approximately 25% while the existing methodology showed a 76% error. The developed methodology is expected to be applicable for flammability evaluation in chemical as well as NPP industries.

노말프로판올의 자연발화온도와 발화지연시간의 관계

  • 하동명;최용찬;한종근;김한돌;신용범;정세훈;이문선;윤준혁;류정열
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.10a
    • /
    • pp.154-159
    • /
    • 2003
  • 화학공장과 제조업 등의 사업장에서 발생하는 화재 및 폭발은 설비와 건물의 파괴뿐만 아니라 사업장의 근로자와 인근 주민에 대한 인명 피해까지 초래하는 경우가 많으므로 공정 안전을 위해 화재 및 폭발 분야의 연구에 많은 관심을 가져야 한다. 방화(Fire Protection) 및 방폭(Fire Protection)에 관련되는 특성치로 MSDS의 5번째 항목인 폭발화재시대처방법(Fire-fighting Measures)에서는 폭발(연소)한계(Explosive Limit 혹은 Flammability Limit), 인화점(Flash Point), 최소발화온도(AIT: Auto-ignition Temperature)가 제시되고 있다.(중략)

  • PDF