• Title/Summary/Keyword: flame stability

Search Result 395, Processing Time 0.037 seconds

A Study on Flame Extinction Behavior in Downstream Interaction between SNG/Air Premixed Flames (SNG/Air 예혼합 화염들의 하류상호작용에 있어서 화염 소화 거동에 관한 연구)

  • Sim, Keunseon;Lee, Keeman
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.48-60
    • /
    • 2016
  • Experimental and numerical studies were conducted to investigate flame behaviors near flammable limits for downstream-interacting SNG-air premixed flames in a counter-flow configuration. The SNG fuel consisted of a methane, a propane, and a hydrogen with volumetric ratios of 91, 6, and 3%, respectively. The most appropriate priority for some reliable reaction mechanisms examined was given to the mechanism of UC San diego via comparison of lean extinction limits attained numerically with experimental ones. Flame stability map was presented with a functional dependencies of lower and upper methane concentrations in terms of global strain rate. The results show that, at the global strain rate of $30s^{-1}$, lean extinction boundary is slanted while rich extinction one is relatively less inclined because of the dependency of such extinction boundary shapes on deficient reactant Lewis number governed by methane mainly. Further increase of global strain rate forces both extinction boundaries to be more slanted and to be shrunk, resulting in an island of extinction boundary and subsequently one flame extinction limit. Extinction mechanisms for lean and rich, symmetric and asymmetric extinction boundary were identified and discussed via heat losses and chemical interaction.

Development of Combustion System for Solid Oxide Fuel Cell System (고체산화물 연료전지용 예혼합 연소시스템 개발)

  • Jo, Soonhye;Lee, Pilhyong;Cha, Chunloon;Hong, Seongweon;Hwang, Sangsoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.96.1-96.1
    • /
    • 2011
  • Solid oxide fuel cells(SOFCs) can convert the chemical energy of fuel into electricity directly. With the rising fuel prices and stricter emission requirement, SOFCs have been widely recognized as a promising technology in the near future. In this study, lean premixed flame using the orifice swirl burner was analyzed numerically and experimentally. We used the program CHEMKIN and the GRI 3.0 chemical reaction mechanism for the calculation of burning velocity and adiabatic flame temperature to investigate the effects of equivalence ratio on the adiabatic flame temperature and burning velocity respectively. Burning velocity of hydrogen was calculated by CHEMKIN simulation was 325cm/s, which was faster than that of methane having 42 cm/s at the same equivalence ratio. Also Ansys Fluent was used so as to analysis the performance with alteration of swirl structure and orifice mixer structure. This experimental study focused on stability and emission characteristics and the influence of swirl and orifice mixer in Solid Oxide Fuel Cell Systme burner. The results show that the stable blue flame with different equivalence ratio. NOx was measured below 20 ppm from equivalence ratios 0.72 to 0.84 and CO which is a very important emission index in combustor was observed below 160 ppm under the same equivalence region.

  • PDF

A Study on the Preparation of Thermoplastic Powder Coating Material and Its Flame Retardancy (열가소성 분말 코팅소재 제조 및 난연특성 연구)

  • Lee, Soon-Hong;Chung, Hwa-Young
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.45-52
    • /
    • 2010
  • The purpose of this study is application to flame retardant powder coating(FRPC) material consisting of ammonium polyphosphate(APP) and magnesium hydroxide($Mg(OH)_2$) as a halogen free flame retardant into thermoplastic resin(LDPE-g-MAH). For improvement of adhesion, LDPE-g-MAH was synthesized from low density polyethylene(LDPE) and maleic anhydride(MAH). The mechanical properties as melt flow index, pencil hardness, cross-hatch adhesion and impact resistance of FRPC were measured. Also, the limited oxygen index(LOI) values were measured 17.3vol%, 31.1vol% and 33.7vol% for LDPE-g-MAH, FRPC-3(APP 15wt%, $Mg(OH)_2$ 15wt%) and FRPC-5(APP 30 wt%), respectively. The thermo gravimetry/differential thermal analysis(TG/DTA) of FPRC-3 was observed endothermic peak at $340^{\circ}C$ and $450^{\circ}C$, it was confirmed predominant thermal stability though the wide temperature range by APP and $Mg(OH)_2$. It was showed V-0 grade for FRPC-3 and FRPC-4(APP 20wt%, $Mg(OH)_2$ 10wt%) that a char formation and drip suppressing effect, and combustion time reduced by UL94(vertical burning test). It was confirmed that flame retardancy was improved with the synergy effect because of char formation by APP and $Mg(OH)_2$.

Edge Flame propagation for Twin Premixed Counterflow Slot Burner (대향류 슬롯 버너에서 이중 예혼합 선단화염의 전파특성)

  • Clayton, David B.;Cha, Min-Suk;Ronney, Paul D.
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.1
    • /
    • pp.25-30
    • /
    • 2009
  • Propagation rates ($U_{edge}$) of various premixed, twin edge-flames were measured as a function of global strain rate ($\sigma$), mixture strength, and Lewis number (Le). Using a counterflow slot-jet burner with electrical heaters at each end, both advancing (positive $U_{edge}$) and retreating (negative $U_{edge}$) edge-flames can be studied as they propagate along the long dimension of the burner. Experimental results are presented for premixed methane/air twin flames in terms of the effects of $\sigma$ on $U_{edge}$. Both low-$\sigma$ and high-$\sigma$ extinction limits were discovered for all mixtures tested. As a result, the domain of edge-flame stability was obtained in terms of heat loss factor and normalized flame thickness, and comparison with the numerical result of other researchers was also made. For low ($CH_4/O_2/CO_2$) and high ($C_{3}H_{8}$/air) Lewis number cases, propagation rates clearly show a strong dependence on Le.

  • PDF

Research on New Nylon-6 Nanocomposites with Flame Retardancy

  • Qiao, Jinliang;Zhang, Xiaohong;Liu, Yiqun;Dong, Weifu;Wang, Qingguo;Gui, Hua;Gao, Jianming;Song, Zhihai;Lai, Jinmei;Huang, Fan
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.139-140
    • /
    • 2006
  • Some of novel halogen-free, elastomeric flame retardants for nylon-6 have been developed. It is found that the S-ENP and clay have a synergistic flame retardant effect on nylon-6 resulted from the formation of two barriers on the nanocomposite residue surface at the end of combustion. A novel flame retardant ternary nanocomposite of nylon-6/ENP/nano-Magnesium hydroxide was also fabricated. The new ternary composite has better flame retardancy and thermal stability than the conventional one because nano-MH can disperse much more homogeneous in the new ternary composite than in the conventional one.

  • PDF

Large-Scale Turbulent Vortical Structure Inside a Sudden Expansion Cylinder Chamber (급 확대부를 갖는 실린더 챔버 내부 유동의 큰 척도 난류 보텍스 구조에 관한 연구)

  • Seong, Hyeong-Jin;Go, Sang-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.905-914
    • /
    • 2001
  • A large eddy simulation(LES) is performed for turbulent flow around a bluff body inside a sudden expansion cylinder chamber, a configuration which resembles a premixed gas turbine combustor. To promote turbulent mixing and to accommodate flame stability, a flame holder is installed inside the combustion chamber. The Smagorinsky model is employed and the calculated Reynolds number is 5,000 based on the bulk velocity and the diameter of the inlet pipe. The simulation code is constructed by using a general coordinate system based on the physical contravariant velocity components. The predicted turbulent statistics are evaluated by comparing them with the laser-doppler velocimetry (LDV) measurement data. The agreement of LES with the experimental data is shown to be satisfactory. Emphasis is placed on the time-dependent evolutions of turbulent vortical structure behind the flame holder. The numerical flow visualizations depict the behavior of large-scale vortices. The turbulent mixing process behind the flame holder is analyzed by visualizing the sectional views of vortical structure.

A Study on the Pollutant Reduction by Venturi Type After-burner (벤츄리형 후연소기의 오염물질 저감에 관한 연구)

  • Lee, Hwa-Sin;Lee, Yong-Hoo;Lee, Jin-Seok;Kwon, Oh-Boong;Lee, Do-Hyung
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.81-86
    • /
    • 2005
  • The purpose of this study is to develop venturi type after-burner in order to obtain pollutant reduction effect and find the best stable combustion condition. For this purpose, through a flow analysis, the shape of venturi type was made and flame holder locations were also decided by measuring chemical species at before and after the after-burner. Also, various chemical species concentration were measured at changing the induced air rates and the oxygen for oxygen enrichment for the solution the problems of much oxygen flow rate and the flame stability range. As results of this study, a flow distribution and the purification effect was excellent at venturi contraction 0.5 and flame holder location 12mm below the center of Venturi throat. On the purification characteristics, we found that pollutants reduction was effective when area ratio and oxygen are increased. But there are suitable quantities due to the flame shape change and combustion efficiency.

  • PDF

A Study on the Laminar Burning Velocity of Synthetic Gas of Coal Gasification(H2/CO)-Air Premixed Flames (석탄가스화 합성가스(H2/CO)-공기 예혼합화염의 층류 연소속도에 관한 연구)

  • Jeong, Byeonggyu;Lee, Keeman
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.493-502
    • /
    • 2012
  • Syngas laminar burning velocity measurements were carried out at atmospheric pressure and ambient temperature using the Bunsen flame configuration with nozzle burner as a fundamental study on flame stability of syngas fuel. Representative syngas mixture compositions ($H_2$:CO) such as 25:75%, 50:50% and 75:25% and equivalence ratios from 0.5 to 1.4 have been conducted. Average laminar burning velocities have been determined by the stabilized nozzle burner flames using the angle method, radical surface area method and compared with the data obtained from the other literatures. And the results of each experimental methodologies in the various composition ratios and equivalence ratios were coincided with the result of numerical simulation. Especially, it was confirmed that there was necessary to choice a more accurate measurement methodology even the same static flame method for the various composition ratios of syngas fuel including hydrogen. Also, it was reconfirmed that the laminar burning velocities gradually increased with the increasing of hydrogen content in a fuel mixture.

Characterization of the Effect of the Inlet Operating Conditions on the Performance of Lean Premixed Gas Turbine Combustors

  • Samperio, J.L.;Santavicca, D.A.;Lee, J.G.
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.3
    • /
    • pp.10-18
    • /
    • 2004
  • An experimental study of the effect of operating conditions on the behavior of a lean premixed laboratory combustor operating on natural gas has been conducted. Measurements were made characterizing the pressure fluctuations in the combustor and the flame structure over a range of inlet temperatures, inlet velocities and equivalence ratios. In addition the fuel distribution at the inlet to the combustor was varied such that it was an independent parameter in the experiment. Inlet temperature, inlet velocity and equivalence ratio were all found to have an effect on the stability characteristics of the combustor. The nature of this effect, however, depended on the fuel distribution. For example, with one fuel distribution the combustor would become unstable when the temperature was increased, whereas with a different fuel distribution the combustor would become unstable when the temperature was decreased. Similarly, the operating conditions had an effect on the flame structure. For example the intensity-weighted center of mass of the flame was found to move closer to the center body as either the temperature or equivalence ratio increased. It was interesting and somewhat surprising to note, however, that as the location of the center of mass changed with operating conditions it did so by moving along a line of constant flame angle.

  • PDF

A Study on Flame and Dynamic Characteristics of Injectors in Liquid Rocket Engine (액체로켓엔진 분사기의 화염 및 동적 특성 연구)

  • Song, Ju-Young;Lee, Kwang-Jin;Seo, Seong-Hyeon;Han, Yeoung-Min;Seol, Woo-Seok
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.141-145
    • /
    • 2004
  • The objective of the present study is to conduct model combustion tests for various injectors to identify their combustion stability characteristics. Three different double swirl coaxial injectors with variation of a recess length have been tested for the comparative study of CH flame structure and dynamic characteristics. Gaseous oxygen and mixture of gaseous methane and propane have been employed for simulating actual propellants used for a full-scale thrust chamber. Upon test results, the direct comparison between various types of injectors can be realized for the selection of the best design among prospective injectors.

  • PDF