• 제목/요약/키워드: flame stability

검색결과 394건 처리시간 0.024초

동축류 제트에서 전기장에 의한 화염 안정성 증진에 대한 실험적 연구 (Experimental Study on the Stability Enhancement of Nonpremixed Flames in Coflow Jets)

  • 원상희;류승관;정석호;차민석
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.191-196
    • /
    • 2007
  • The enhancement of flame stability in coflow jets has been investigated experimentally by observing the liftoff behaviors of nonpremixed propane and methane flames in the electric fields. The liftoff or blowoff velocities has been measured in terms of the applied AC voltages and frequency. The experimental results showed that the liftoff velocity could be extended significantly just by applying the high voltage to the central fuel nozzle both for propane and methane. As increasing the applied voltage, the liftoff velocity increases almost linearly with the applied voltage and have its maximum value at certain applied voltage. After that, the liftoff velocity showed decrease with the applied voltage. Through the experimental observation, we found that the liftoff velocity could be correlated well with the applied voltage and frequency in the linearly increasing regime. And after having maximum in the liftoff velocity, it was observed that the liftoff velocity decreases with the applied voltage irrespective of AC frequencies. To visualize the change of flame structure with electric fields, planar laser induced fluorescence technique was adopted, and the enhancement of flame stability has been explained based on the flame structural change in electric fields.

  • PDF

선회유동을 이용한 펠릿연소기의 화염안정화 연구 (A Study on The Flame Stability of Pellet Combustor Using Swirling Flow)

  • 이도형;윤봉석;왕진위
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.35-41
    • /
    • 2014
  • The wood pellet, which is one of the woody biomass energy, has very high economic efficiency and combustion efficiency during their combustion. The existing pellet burner have many problems such as low combustion efficiency, flame stabilization, ash problem and ignition time etc. We developed cyclonic wood pellet burner aim to 20,000kcal/hr boiler and measured temperature profiles and exhaust gases in order to investigate the flame stability and optimum combustion condition at any air flow conditions. As results, we confirmed the reappearance and the isotropy of the experimental results in the burner. At the first air flow inlet condition of excess air ratio ${\alpha}=0.02$, second air flow $490{\ell}/min$ had the best combustion condition when pellet supplied 30g. This result means that we need much air supply only for the swirling of second air flow. So we tested various second air flux at first air excess air ratio ${\alpha}=0.7$ condition. At this condition, we could find out that we don't need much second air and total air flux compared to the former condition. We will continuously test this work of air flow distribution, and swirl effect of first air flow, and ash elimination.

모델 가스터빈 연소기에서 합성가스 연소성능시험 - Part 1 : 화염안정성 (Combustion Performance Test of Syngas Gas in a Model Gas Turbine Combustor - Part 1 : Flame Stability)

  • 이민철;주성필;윤지수;윤영빈
    • 한국항공우주학회지
    • /
    • 제41권8호
    • /
    • pp.632-638
    • /
    • 2013
  • 본 논문에서는 네덜란드 부게넘 및 국내 태안 IGCC플랜트의 석탄으로부터 생성된 합성가스의 화염안정성 및 연소불안정성에 대해 기술하였다. GE7EA 모사 가스터빈 연소기를 대상으로 상압 고온 연소시험을 수행하여 입열량 및 질소희석에 따른 연소특성을 관찰하였다. 시험결과를 통해 화염안정화 선도는 화염의 구조에 따라 Regime I부터 VI까지 6개의 영역으로 구분하였고, 2개의 영역(Regime I, II)에서 화염이 안정적으로 연소되는 것을 확인하였다. 태안 및 부게넘 합성가스 모두 안정하게 연소되고, 화염이 외부 재순환 유동과 결합되는 Regime II에 해당하는 것을 확인하였다. 또한 $H_2$/CO비만을 고려하면 수소의 함량이 높은 부게넘 가스가 안정적 연소구간이 넓지만, 질소희석을 고려할 때 부게넘 가스 내의 더 많은 질소가 화염안정성에 부정적 영향을 미치기 때문에 태안 합성가스가 부게넘 합성가스보다 더 안정적으로 연소하였다.

Synthesis of Triazole-functionalized Phenolic Resin and its Inherent Flame Retardant Property

  • Poduval, Mithrabinda K.K.;Kim, Tae-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권11호
    • /
    • pp.3249-3253
    • /
    • 2014
  • A novel triazole-functionalized phenolic resin was developed, and its thermal and flame-retardant properties were investigated. The triazole group was incorporated as a pendant unit on the phenolic resin via copper-mediated click chemistry between propargylated phenolic resin and benzyl azide. The newly-developed triazole-functionalized phenolic resin showed higher thermal stability and char yield, together with a reduced total heat release (THR), than the non-functionalized bare phenolic resin, indicating enhanced flame retardancy for the triazole-functionalized phenolic resin.

인 화합물에 의한 나일론 직물의 방염가공 (Flame Retardant Finishing for Nylon Fabric with Phosphate Compound)

  • 김수창
    • 한국염색가공학회지
    • /
    • 제10권4호
    • /
    • pp.30-36
    • /
    • 1998
  • The need for the effective flame retardant finishing for synthetic fiber Is required. This paper is focussed on the analysis of physical properties of nylon 6 fabric treated with tris(2-chloroethyl) phosphate(TCEP) in comparision with the untreated fabric. In order to evaluate the flame retardance effect, limiting oxygen index and burn rate were determined. Above 20% add-on of TCEP on nylon 6 fabric, reasonable flame retardancy was observed. Thermal stability of the treated nylon 6 fabric was evaluated by TGA. It seems that TCEP acts via a condensed phase mechanism. Tenacity and moisture regain of the treated fabrics were not changed and washfastness of those was excellent.

  • PDF

Recent Developments of Tubular Flame Burners

  • Ishizuka, S.
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.7-8
    • /
    • 2006
  • As a new type of flame, tubular flame has attracted much attention from a fundamental viewpoint and many experimental and theoretical studies have been made on its characteristics. Recently, it is also recognized that the tubular flame has great potentials as practical combustor because its stability range is very wide in fuel concentration and also in injection velocity. Thus, tubular flame burners have been developed for various kinds of fuels. They are gaseous fuels of methane, propane, hydrogen, and by-product fuels gases in steel making processes including BFG (Blast Furnace Gas), LDG (LD Converter Gas), and COG (Cokes-Oven Gas), liquid fuels of kerosene, A-type and C-type heavy oils, and a solid fuel of biomass powder. In this paper, recent developments of the tubular flame burners have been briefly introduced.

  • PDF

질소로 희석된 LPG 연료의 가연한계와 화염 안정성 (Flammability Limit and Flame Instability of Nitrogen-Diluted LPG Fuel)

  • 안태국;남연우;이경우;이원남
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.319-321
    • /
    • 2012
  • The flammability limit and the flame instability of nitrogen-diluted LPG fuel was experimentally studied on a co-flow flame configuration. The combustion reaction of nitrogen-diluted hydrocarbon with air could be interpreted as the equivalent reaction of pure fuel with nitrogen-diluted air. Nitrogen-diluted LPG with nitrogen up to 90 % of nitrogen mole fraction in fuel, which is close to the flammability limit, could form a co-flow flame. Various parameters such as laminar or turbulent flame, the existence of diffusion flame with pure fuel, air temperature could affect the limit of flame formation.

  • PDF

Twin-Jet 대향류에서 메탄 비예혼합화염의 소염 특성 (Extinction of Non-premixed methane Flame in Twin-Jet Counterflow)

  • 노태곤;양승연;류승관;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.195-200
    • /
    • 2003
  • A two-dimensional "twin-jet counterflow" burner has been designed for the better understanding of the stability of turbulent flames. This flow system enables one to systematically investigate various effects on non-premixed flames, including the effects of curvature, negative strain, and non-premixed flame interactions. The objective of this study is comparing characteristics of extinction of non-premixed methane flames with that of non-premixed propane flames investigated previously. The extinction limit of non-premixed methane and propane flames can be extended compare to that for the conventional counterflow non-premixed flame because of the existence of petal shaped flame and have same structure. The hysteresis in transition between the petal shaped flame and the curved two-wing flames could be observed. We could find differences between non-premixed methane flame and non-premixe propane flame such as the position of one wing extinction and the regime of one wing extinction.

  • PDF

연료분출 조건에 따른 확산화염의 연소특성에 관한 연구 (A Study on the Combustion Characteristics of Diffusion Flame with the Fuel Injection Condition)

  • 이성노;안진근
    • 청정기술
    • /
    • 제13권4호
    • /
    • pp.300-307
    • /
    • 2007
  • 본 연구에서는 연료분출각의 변화에 따라 보염기(cylindrical stabilizer) 후류에 형성되는 확산화염의 화염 안정성, 재순환영역의 길이 및 온도, 보염기 후류의 난류강도 분포, 재순환영역의 연소가스 농도 등을 측정하고, 화염의 직접사진 및 슐리렌사진을 촬영하여 확산화염의 연소특성을 고찰하였다. 화염안정성은 연료분출각과 주류공기 유속의 영향을 받으며, 재순환영역의 길이와 온도는 연료분출각의 영향을 받았다. 재순환영역의 길이가 짧고 온도가 낮을수록 화염안정성이 양호하지만, 연료분출각의 변화에 따른 난류강도 분포에는 별로 차이가 없었다. 재순환영역 내 미연가스 농도가 높고 이산화탄소 농도가 낮은 경우, 화염안정성은 양호하지만 연소상태는 불량한 것으로 나타났다. 연소효율, 고부하 출력, 대기환경, 연료의 청정연소조건 등을 고려하여 적절한 연료분출각을 선정함으로써 양호한 연소조건을 유지할 수 있다.

  • PDF

미분탄 순산소 연소에서 주위 기체와 석탄 특성이 화염전파에 미치는 영향 (Influence of Surrounding Gas and Coal Characteristics on Flame Propagation in Oxy-Fuel Combustion of Pulverized Coal)

  • 강영민;심영삼;문철언;성연모;서상일;김태형;최경민;김덕줄
    • 대한기계학회논문집B
    • /
    • 제33권1호
    • /
    • pp.38-45
    • /
    • 2009
  • Oxy-fuel combustion of pulverized coal is one of the promising new technologies to reduce $CO_2$ and NOx from coal combustion. However, the stability of pulverized coal flame is reduced in the oxy-fuel combustion. This flame stability is concerned with the flame propagation that is affected by surrounding gas and coal characteristics, such as gas temperature, gas composition, coal volatile, coal activation energy and coal size. In this paper, a study on the influence of surrounding gas and coal characteristics on the flame propagation velocity in oxy-fuel combustion of pulverized coal was preformed. One dimensional model was used to calculate the flame propagation velocity of pulverized coal clouds. In this model, the radiation is considered to be the main source of heat exchange, and Monte Carlo method was adopted for accurate calculation of radiation heat flux. It was found that the flame propagation velocity become higher with the decrease of coal activation energy and the increase of coal volatile. Also, according to the increase of gas temperature and $O_2$ concentration, flame propagation velocity increased.