• 제목/요약/키워드: flame size

검색결과 312건 처리시간 0.026초

노즐 특성 변화에 따른 미분무수와 화염과의 상호작용에 관한 수치해석 (Numerical Analysis on Interaction between Fire Flame and Water Mist according to the Variation of Nozzle Performance)

  • 배강열;정희택;김형범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2983-2988
    • /
    • 2007
  • In the present study, the numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m$ and a water mist nozzle that be installed 1.8m from fire pool. In the study, the parameters of nozzle for simulation are the droplet size and the spray velocity. Finally, the droplet size influences to fire flume on fire suppression than spray velocity because of the effect of terminal velocity, and the optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20m/s, respectively.

  • PDF

광산란과 입자포집을 이용한 동축류 확산화염 내의 실리카 입자의 성장 측정(II) - 확산의 영향 - (An Experimental Study of Silica Particle Growth in a Coflow Diffusion Flame Utilizing Light Scattering and Local Sampling Technique (II) - Effects of Diffusion -)

  • 조재걸;이정훈;김현우;최만수
    • 대한기계학회논문집B
    • /
    • 제23권9호
    • /
    • pp.1151-1162
    • /
    • 1999
  • The effects of radial heat and $H_2O$ diffusion on the evolution of silica particles in coflow diffusion flames have been studied experimentally. The evolution of silica aggregate particles in coflow diffusion flames has been measured experimentally using light scattering and thermophoretic sampling techniques. The measurements of scattering cross section from $90^{\circ}$ light scattering have been utilized to calculate the aggregate number density and volume fraction using with combination of measuring the particle size and morphology through the localized sampling and a TEM image analysis. Aggregate or particle number densities and volume fractions were calculated using Rayleigh-Debye-Gans and Mie theory for fractal aggregates and spherical particles, respectively. Flame temperatures and volumetric differential scattering cross sections have been measured for different flame conditions such as inert gas species, $H_2$ flow rates, and burner injection configurations to examine the relation between the formation of particles and radial $H_2O$ diffusion. The comparisons of oxidation and flame hydrolysis have also been made for various $H_2$ flow rates using $N_2$ or $O_2$ as a carrier gas. Results indicate that the role of oxidation becomes dominant as both carrier gas($O_2$) and $H_2$ flow rates increases since the radial heat diffusion precedes $H_2O$ diffusion in coflow flames used in this study. The effect of carrier gas flow rates on the evolution of silica particles have also been studied. When using $N_2$ as a carrier gas, the particle volume fraction has a maximum at a certain carrier gas flow rate and as the flow rate is further increased, the hydrolysis reaction Is delayed and the spherical particles finally evolves into fractal aggregates due to decreased flame temperature and residence time.

적외선 비디오에서 Haar 웨이블릿과 이동평균을 이용한 화염검출 (Flame Detection Using Haar Wavelet and Moving Average in Infrared Video)

  • 김동근
    • 정보처리학회논문지B
    • /
    • 제16B권5호
    • /
    • pp.367-376
    • /
    • 2009
  • 본 논문은 적외선 영상에서 Haar 웨이블릿과 이동평균을 이용한 화염검출 방법을 제안한다. 제안된 방법은 Haar 웨이블릿 변환 단계, 화염 후보영역 검출단계, 화염후보영역 추적 및 화염 판단의 3단계로 구성된다. Haar 웨이블릿 변환 단계는 Haar 웨이블릿을 적용하여 입력영상 프레임을 4개의 부영상으로 분할하고, 고주파 영상을 합성하여 에너지를 계산한다. 화염 후보영역 검출단계에서는 저주파영역에서 임계값을 적용하여 높은 밝기 값을 갖는 이진영상을 구한 다음, 연결 알고리즘을 이용하여 초기 화염후보영역의 경계선을 구하고, 영역확장 방법을 이용하여 최종 화염 후보영역을 계산한다. 화염후보영역의 추적 및 화염 판단 단계에서는 화염후보영역의 크기와 고주파 성분 에너지 평균을 계산하고, 큐를 사용하여 추적하면서, 계산된 특징의 이동평균이 변동되는 영역을 화염영역으로 판단한다.

IRWST 환형관 실험장치 내의 수소화염 가속현상에 대한 CFD 해석 연구 (CFD ANALYSIS FOR HYDROGEN FLAME ACCELERATION IN THE IRWST ANNULUS TEST FACILITY)

  • 강형석;하광순;김상백;홍성완
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.75-86
    • /
    • 2012
  • We developed a preliminary CFD analysis methodology to predict a pressure build up due to hydrogen flame acceleration in the APR1400 IRWST on the basis of CFD analysis results for test data of hydrogen flame acceleration in a scaled-down test facility performed by Korea Atomic Energy Research Institute. We found out that ANSYS CFX-13 with a combustion model of the so-called turbulent flame closure and a model constant of A = 5.0, a grid model with a hexahedral cell length of 5.0 mm, and a time step size of $1.0{\times}10^{-5}$ s can be a useful tool to predict the pressure build up due to the hydrogen flame acceleration in the test results. Through the comparison of the simulated results with the test results, we found out that the proposed CFD analysis methodology enables us to predict the peak pressure within an error range of about ${\pm}29%$ for the hydrogen concentration of 19.5%. However, the error ranges of the peak pressure for the hydrogen concentration of 15.4% and 18.6% were about 66% and 51%, respectively. To reduce the error ranges in case of the hydrogen concentration of 15.4% and 18.6%, some uncertainties of the test conditions should be clarified. In addition, an investigation for a possibility of flame extinction in the test results should be performed.

고분자 첨가제인 난연제로서의 수산화마그네슘계 물질의 합성과 특성 (Synthesis and Characteristics of Magnesium Hydroxide Group Flame Retardant for Polymer Addtives)

  • 이동규;강국현;이진화
    • 한국응용과학기술학회지
    • /
    • 제26권4호
    • /
    • pp.385-393
    • /
    • 2009
  • Different types magnesium hydroxide groups have been obtained using the hydrothermal precipitation technique from magnesium sulfate and calcium carbonate solution. The Mg atom coordinated around O atom of ${SO_4}^{2-}$ in another layer to form a multi-layer structure crystal. The influence of synthesis parameters on the morphological characteristics and size of magnesium hydroxide groups precipitated in aqueous were investigated such as different of additive and pH. Magnesium hydroxide groups were decomposed gradually and converted finally to MgO particles after heated in air temperature up to $1050^{\circ}C$. The particle size and it's distribution morphology, crystal phase and thermal behavior of the samples were characterized through XRD, SEM, EDS, and TG/DTA.

Experimental Study on Characteristics of Synergistic Effect of Fuel Mixing on Number Density and Size of Soot in Ethylene-base Counterflow Diffusion Flames by Laser Techniques

  • Choi, Jae-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권3호
    • /
    • pp.378-386
    • /
    • 2009
  • The effect of fuel mixing on soot structure with methane, ethane, and propane to ethylene-base counterflow diffusion flames has been investigated by measuring the volume fraction, number density, and particle size of soot by adopting the light extinction/scattering techniques. The experimental result showed that the mixing of ethane and propane in ethylene diffusion flame increased soot volume fraction while the mixing of methane decreased. As compare to the ethylene-base flame, the diameters of soot particles for mixture flames are slightly smaller. While the soot number densities for the mixture flames are much higher. Thus, the increase in the soot volume fraction can be attributed to the appreciably increased soot number density by the fuel mixing.

나노 사이즈 TiO2 광촉매를 이용한 페놀 분해 (Degration of Phenol by Using Nano-sized TiO2 Photocatalysts)

  • 최상근;김동주;김교선
    • 산업기술연구
    • /
    • 제21권A호
    • /
    • pp.273-278
    • /
    • 2001
  • In this study, we prepared nano-sized $TiO_2$ particles for various process variables by the diffusion flame reactor and we collected $TiO_2$ particles by thermophoresis. It is found that the size of $TiO_2$ particles increases, as the flame temperature or the inlet $TiCl_4$ concentration increase or the total gas flow rate decreases. We investigated the photo-degradation of phenol wish the prepared $TiO_2$ particles. We found the optimum amounts of $TiO_2$ photocatalysts for our experimental apparatus and investigated the photo-degradation efficiencies of phenol, changing the process variables such as size of $TiO_2$ photocatlysts, phase ratio of rutile/anatase, concentration of phenol, input ratio of $O_2$. Degradation efficiencies of phenol were almost 95% in 15 minutes for the standard conditions of our experiments.

  • PDF

대향류 확산화염에 대한 직접수치모사의 검증 (An Evaluation of a Direct Numerical Simulation for Counterflow Diffusion Flames)

  • 박외철
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.74-81
    • /
    • 2001
  • A direct numerical simulation (DNS) was applied to nonpremixed counter-flow diffusion flames between oxidizer and fuel ducts. The objective of this study is to evaluate the numerical method for simulation of axisymmetric counterflow diffusion flames. Effects of computational domain size and grid size were scrutinized, and then the method was applied to air-methane diffusion flames. The results at zero gravity conditions were in good agreement with those obtained by the one-dimension flame code OPPDIF. It was confirmed thai the numerical method is applicable to the diffusion flames at the normal gravity conditions since the results clearly showed the effects of buoyancy and velocity ratio.

  • PDF

Sooting 및 Non-Sooting 정상 확산 화염에서 생성되는 매연 입자의 특성에 대한 연구 (Characterization of Soot Particles Generated in Non-sooting and Sooting Normal Diffusion Flames)

  • 최인철;이재복;황정호
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.984-993
    • /
    • 2000
  • Characteristics of carbon soot particles generated in diffusion flames were studied. Non-sooting and sooting normal diffusion flames using propane or ethylene as fuel were selected. In the flames, soot volume fraction was measured by a thermocouple, and primary particle diameter and cluster size were analyzed by TEM photographs. The characteristics of soot particles depended on flame(non-sooting or sooting) and fuel(propane or ethylene) type. Unlike the sooting diffusion flames, particle growth and oxidation processes were clearly observed in the non-sooting diffusion flames. In the sooting diffusion flames, soot particle size was slightly changed at the flame tip.

단일 유화액적에서의 분위기 온도와 액적크기에 따른 자발화와 미소폭발의 영향 (Effect of Ambient Temperature and Droplet Size of a Single Emulsion Droplet on Auto-ignition and Micro-explosion)

  • 정인철;이경환
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.49-55
    • /
    • 2007
  • The characteristics of auto-ignition and combustion process of a single droplet of emulsified fuel suspended in a high-temperature air chamber have been investigated experimentally with various droplet sizes, surrounding temperatures, and water contents. The used fuels was n-Decane and it was emulsified with varied water contents whose maximum is 30%. The high-speed camera has been adopted to measure the ignition delay and flame life time. It was also applied to observe micro-explosion behaviors. The increase of droplet size and chamber temperature cause the decrease of the ignition delay time and flame life-time. As the water contents increases, the ignition delay time increases and the micro-explosion behaviors are strengthened. The starting timings of micro-explosion and fuel puffing are compared for different droplet sizes and the amount of water contents.