• Title/Summary/Keyword: flame retardant plywood

Search Result 16, Processing Time 0.027 seconds

Research on Flame Retardant Formaldehyde-Free Plywood Glued by Aqueous Polymer Isocyanate Adhesive

  • WEN, Ming-Yu;ZHU, Jia-Zhi;ZHU, Meng;SUN, Yao-Xing;PARK, Hee-Jun;SHI, Junyou
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.755-764
    • /
    • 2020
  • Due to pronounced mechanical performance and being environmental friendly, aqueous polymer isocyanate adhesive (API) has been widely applied in the production of formaldehyde-free wood products. In this study, flame retardant formaldehyde-free plywood was prepared by incorporation of flame retardants into the API adhesive. Partially phosphorylated poly (vinyl alcohol) (PPVA) which was prepared by reacting poly (vinyl alcohol) with phosphoric acid was used to replace PVA in API formula. In addition, Mg-Al layered double hydroxides (LDH) was chosen as additive flame retardant, replacing traditional filler CaCO3 in API adhesive formula. And then, the flame retardant API adhesive with main agent (PPVA replacing PVA70wt.%, SBR emulsion 30wt.%), curing agent 10wt.% (accounts for of the main agent), and 20wt.% LDHs (accounts of the main agent) was used to prepare flame retardant plywood. The effect of application of PPVA and Mg-Al LDH on bonding strength of plywood was investigated. The flammability characteristics of the plywood were determined by cone calorimeter test (CCT). The results revealed that compared with the plywood prepared with API adhesive, the use of PPVA and LDH enhanced the flame retardancy of plywood without negatively affecting bonding strength. The CCT tests indicated that the heat release and smoke production flame retardant API plywood were lower than those of the ordinary API glued plywood. Promising developments for flame retardant API adhesive were expected in future applications of flame retardant formaldehyde-free plywood.

Research on Flame Retardant Plywood with Different Flame Retardants

  • LIU, Yang;XU, Jun-xian;WEN, Ming-yu;PARK, Hee-Jun;ZHU, Jia-zhi;LIU, Yu-nan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.667-678
    • /
    • 2021
  • The flame retardancy of plywood should be improved as much as possible while minimizing the impact on the bonding strength of plywood. Six commercial flame retardants and three laboratory synthesized phosphorous nitrogen flame retardants were selected. E0, E1 and E2 grade commercial formaldehyde resins (UF) were applied in this study to evaluate the effect of different flame retardants on the curing time of resin, bonding strength, flame retardant performance, and formaldehyde emission of plywood. The results show that the effect of the addition of different flame retardants on the bonding strength of plywood gradually decreased with the increase of the formaldehyde molar ratio of the resin. The effect of flame retardants on the curing time of UF gradually decreased as the mole ratio of formaldehyde increasing, while the amount of formaldehyde emission varied according to the content of formaldehyde in the flame retardant. Compared with plywood without flame retardant, flame retardant of plywood added with phosphorous nitrogen flame retardant was improved.

Comparative Analysis of Flame Retardant Performance of Japanese Cypress Plywood Based on the Main Ingredients of Fire Retardant Paint (도료의 주성분에 따른 편백 합판의 방염성능 비교 분석)

  • Soo-Hee Lim;Ha-Sung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.1
    • /
    • pp.61-66
    • /
    • 2023
  • The purpose of this study is to compare and analyze the flame retardant performance of Japanese cypress(Chamaecyparis obtusa) plywood, commonly used in indoor decoration, furniture, and tableware, by treating it with three different fire retardants with different primary ingredients. The experiment was conducted in compliance with Article 31, Paragraph 2 of the Enforcement Decree of the Fire Facilities Installation and Management Act and Articles 4 and 7-2 of the Flame Retardant Performance Standards. After flame time, after glow time, char length, and char area were measured. As a result, first, after flame time was measured at 0 seconds regardless of whether the flame retardant treatment was applied. Second, after glow time was relatively long, measuring 22.7 seconds without treatment, which is likely due to the weak fire resistance and high concentration of carbon monoxide generated by the chemical characteristics of the Japanese cypress itself. Third, it was confirmed that the effects of the primary ingredient, phosphorus, in the flame retardant treatment varied depending on the technological development of the manufacturers of the same species of Japanese cypress plywood. In the future, it is expected that the results of this study will provide fundamental data to select flame retardant treatments that show high flame retardant performance according to the botanical characteristics of the wood.

Flame Retardancy of Wood Products by Spreading Concentration and Impregnation Time of Flame Retardant (방염제의 도포량과 침지시간 차이에 따른 목재제품의 방염성능)

  • PARK, Sohyun;HAN, Yeonjung;SON, Dong Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.417-430
    • /
    • 2020
  • The flame retardancy, such as carbonized length and area, of four plank type wood products by the spreading concentration and impregnation time of flame retardant were measured according to standard of the Nation Fire Agency in Republic of Korea. To measure the flame retardancy, Korean pine plywood, Japanese larch plywood, Japanese cypress planks, and perforated birch plywood boards were treated with self-development flame retardant by 300 and 500 g/㎡ spreading concentration and those were compared with control specimen. In general, the flame retardant performance of wood products improved as the spreading concentration of flame retardant increased. Except for Japanese larch plywood, there was no significant difference in the flame retardant performance by the spreading concentration. The flame retardant performance of perforated birch plywood board was positively correlated up to 60 minutes of impregnation time, but then gradually decreased. These results about the flame retardancy of wood products by spreading concentration and impregnation time were expected to be basic data for improving flame-retardant treated wood.

Performance Evaluation of Functional Oil Stain by Plywood Type (합판 종류에 따른 기능성 오일스테인의 성능 평가)

  • Lee, Ju-Won;Lee, Chang-Woo;Hwang, Woo-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.35-36
    • /
    • 2022
  • In order to supplement the flame-retardant performance of oil stain, which can prevent wooden buildings from contamination, (NH4)2HPO4, a phosphorus flame-retardant, was added to oil stain and applied for each type of plywood, and an experiment was conducted. The addition rate was set to 0-60%, but white powder appeared on the surface of plywood from 40% and thus it was impossible to experiment, so the maximum addition rate was selected as 30%. As a result of the experiment, acacia plywood had the best performance. As the rate of addition of the flame retardant increased, the remaining time and carbonization length of all plywood decreased, but the carbonization length of the MDF plywood was not met with the standards.

  • PDF

A Study on the Flame Resistance and Combustion Characteristics of MDF Plywood (MDF합판의 방염 및 연소특성에 관한 연구)

  • Kim, In-Beom
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.256-260
    • /
    • 2014
  • Interior of the building is used as a MDF plywood if there is a fire in order to delay the ignition, flame retardant paint, flame retardant solution and flame retardant film are being handled by the flame retardant. Combustion characteristics anf flame retardant performance results can be summarized as follows: General film with a sample showed that short of the criteria in terms of carbonation area, and the results of flame retardant paint, flame retardant solution and flame retardant film products satisfied the criteria. Toxic gases generated in the combustion process results in a film samples using a high incidence of carbon monoxide and the creation of a smoke could be seen. This confirm that is estimated that result from incomplete combustion of PVC film that attach, and displays high toxicity index and hazard class relatively.

Studies on Plywood Treated Fire-Retardant - III. The Fire-Retardant Degree of Monoammonium Phosphate Treated Plywood (합판(合板)의 내화처리(耐火處理)에 관(關)한 연구(硏究) - III. 제1인산(第一燐酸)암모늄처리합판(處理合板)의 내화도(耐火度))

  • Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.21-28
    • /
    • 1986
  • Plywood used for construction as a decorative inner material is inflammable and can fire accident, causing destruction of human life and property. In this study, 3.5mm Kapur plywoods were soaked in the 23% monoammonium phosphate solutions by cold soaking method 3, 6, 9hrs and hot-cold bath method for 3/3hrs, and redrying was carried out by press-drying at the platen temperature of 110, 130, 160, 180$^{\circ}C$, and then fire test was carried out to investigate burning point, flame exhausted length, frame spread length, back side carbonized area and weight loss. The results are as follows; 1. In cold soaking method for 3, 6, 9hrs. retentions of monoammonium phosphate were 0.377, 0.448, 0.498kg/(30cm)$^3$ respectively, and in hot-cold bath method for 3/3hrs, the retention was 1.331kg(30cm)$^3$ that exceeded the minimum retention 1.124kg/(30cm)$^3$. 2. Correlation coefficients among the variable were shown in table 2. From the table, it could be recognized that there were close negative correlations between the treatment and burning point, flame spread length, back side carbonized area, flame exhausted time and weight loss, and there was negative correlation between treating time and back side carbonized area, but there was positive correlation between platen temperature and burning point. 3. From table 3, it can be observed that there were highly significant differences for burning point, flame spread length, flame exhausted time, back side carhonized area, weight loss between treatments. And in 2-way interactions, there were also highly significant for burning point, flame spread length, flame exhausted time, weight loss between time x treatment. 4. It was observed that burning point, flame exhausted time, flame spread length, back side carbonized area, and weight loss in fire-retardant treated plywood were the best effects in fire-retardant treated plywood, water treated plywood and nontreated plywood. In conclusion, I can estimate that absorbed chemical contents by hot-cold bath method for 3/3hrs, have a lot of effects on fire-retardant factors such as burning point, flame spread length, flame exhausted time, backside carbonized area and weight loss, but platen temperatures have a little effects on the fire factors.

  • PDF

Studies on Press Drying and Dynamic Elastic Modulus of Plywood Treated with Boric Acid (붕산처리(硼酸處理) 합판(合板)의 열판건조(熱板乾燥) 및 동적(動的) 탄성율(彈性率)에 관(關)한 연구(硏究))

  • Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.56-67
    • /
    • 1987
  • Plywoods used for construction as a decorative interior material are inflammable and can make fire accidents, causing destruction of human life and property. Therefore, it is indeed required to make fire-retardant treated plywood. In this study, 3.7mm yellow meranti plywoods were soaked in 18% boric acid solutions and tap water by hot-cold bath for 1/2, 2/2, 4/2, 6/2 hours and redrying of treated plywoods was carried out by press drying at the platen temperature of 110, 130, 160, $180^{\circ}C$ and then it was conducted to investigate solution absorption, drying rates, dynamic young's modulus. specific gravity and fire-retardant factors such as burning point, flame spread length. flame exhausted time, back side carbonized area and weight loss by treating time, treating solutions and platen temperature. The results are as follows; 1. When plywood was impregnated with the hot bath temperature of $70^{\circ}C$ for 1. 2, 4, 6 hours and the cold bath temperature of $15^{\circ}C$ for 2 hours respectively, retentions of boric acid were 1.565, l.597, 1.643, 1.709kg/$(30cm)^3$ and all of them exceeded the minimum retention [1.125kg/$(30cm)^3$] even in the shortest treatment. 2. In hot-cold bath method for 1/2 hours, the drying rates of treated plywood remarkably increased with the extension of platen temperature of 110, 130, 160, $180^{\circ}C$ and the values of boric acid treated plywood were 5.900, 10.196, 45.42, 54.958m.c%/min and the values of water treated plywood were 6.014, 12.373, 46.520, 55.730m.c%/min and drying rates of water treated plywood were faster than those of boric acid treated plywood. 3. The values of boric acid treated plywoods in dynamic young's modulus were widely higher than those of water treated plywoods. And it can be observed that there were highly significant differences for treating time between dynamic young's modulus, and the values of boric acid plywoods increased with the extension of treating time but on the contrary water treated plywoods were decreased values with prolonged time 4. It was observed that there were highly significant differences for platen temperature between dynamic young's modulus. When the values of water treated plywoods in dyna nic young's modulus were abruptly decreased according to the rise of platen temperature. boric acid treated plywoods showed rather increased values at $160^{\circ}C$ of platen temperature. And in 2- way interactions, there were also highly significant for dynamic young's modulus between treating time x treating solutions and platen temperature x treating solutions. 5. Correlation coefficients of fire-retardant factors were shown in table 5. It could be recognized that there were close correlations between the treating solutions and burning point, flame spread length, back side carbonized area, flame exhausted time and weight loss, but there was no correlation between fire-retardant factors and treating time and platen temperature. 6. From table 6, it can be observed that there were highly significant differences for burning point, flame spread length, flame exhausted time, back side carbonized area, weight loss between treating solutions. And in 2-way interactions, there were highly significant for burning point, flame spread length, weight loss between treating time $\times$ treating solutions.

  • PDF

Synergistic Effect of 3A Zeolite on The Flame Retardant Properties of Poplar Plywood Treated with APP

  • Wang, Mingzhi;Ji, Haiping;Li, Li
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.258-264
    • /
    • 2015
  • To evaluate the influence of 3A zeolite on the flame retardant properties of poplar plywood. Ammonium polyphosphate (APP) and 3A zeolite were used as flame retardants to prepare plywood samples. The combustion properties, such as heat release rate (HRR), total heat release (THR), mean CO and $CO_2$ yield, smoke production rate (SPR), and total smoke production (TSP), were characterized by a cone calorimeter. A synergistic effect was observed between 3A zeolite and APP on reducing the HRR and mean CO yield. The probable flame retardation mechanism was proposed.

Flame Retardancy of Plywood Treated with Various Water Glass Concentration and Additives (물유리의 농도와 첨가제 종류에 따른 방염제의 성능)

  • PARK, Sohyun;HAN, Yeonjung;SON, Dong Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.44-56
    • /
    • 2021
  • The carbonized length and area of plywood by the various spreading concentration of water glass and the type of additives were measured in accordance with the 45° MecKel's burner method of the fire protection performance standard of the Korean National Fire Agency. As a result of treating water glass with a concentration of 20 to 50 % on plywood, the flame retardancy tended to increase in proportion to the concentration of water glass. However, the optimum concentration of water glass was determined to be 30 % due to the efflorescence and sticky on the surface of plywood treated with high-concentration water glass of more than 30 %. As a result of the experiment by adding different proportions of additives to the water glass with concentration of 30 %, the standard of flame performance standard was satisfied under the conditions with the addition of 15% potassium hydroxide and 1-10% aluminum hydroxide, respectively. On the other hand, there were no significant difference in the flame retardancy by adding magnesium sulfate. These results about the flame retardancy of plywood by water glass and additives were expected to be basic data for improving flame-retardant treated wood.