• Title/Summary/Keyword: flame height

Search Result 173, Processing Time 0.022 seconds

Liftoff mechanisms in hydrogen turbulent non-premixed jet flames (수소 난류확산화염에서의 부상 메커니즘에 대한 연구)

  • Oh, Jeong-Seog;Kim, Mun-ki;Choi, Yeong-Il;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.7-12
    • /
    • 2007
  • To reveal the newly found liftoff height behavior of hydrogen jet, we have experimentally studied the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition. The objectives of the present research are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The velocity of hydrogen was varied from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone. PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As results, it has been found that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means that combustion occurs where the local flow velocity is valanced with the turbulent flame propagation velocity.

  • PDF

Study on Soot Primary Particle Size Measurement in Ethylene Diffusion Flame by Time-Resolved Laser-Induced Incandescence (시분해 레이저 유도 백열법을 이용한 에틸렌 확산 화염에서의 매연 일차입자크기 측정에 관한 연구)

  • Kim Gyu-Bo;Cho Seung-Wan;Lee Jong-Ho;Jeong Dong-Soo;Chang Young-June;Jeon Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.973-981
    • /
    • 2006
  • Recently there is an increasing interest in particulate matter emission because of new emission regulations, health awareness and environmental problems. It requires to improve particulate measurement techniques as well as to reduce soot emissions from combustion systems. As mentioned above, it is demanded that reduction techniques together with measurement techniques of exhausted particulate matters in combustion systems such as vehicles. However, measurement techniques of particulate matters should be prior to reduction techniques of that because it is able to know an increase and a decrease of exhausted particulate matters when measured particulate matters. Therefore, in this study, we report the measurement of soot primary-particle size using time-resolved laser induced incandescence (TIRE-LII) technique in laminar ethylene diffusion flame. As an optical method, laser induced incandescence is one of well known methods to get information for spatial and temporal soot volume fraction and soot primary particle size. Furthermore, TIRE-LII is able to measure soot primary particle size that is decided to solve the decay ate of signal S $(t_1)$ and S $(t_2)$ at two detection time. In laminar ethylene diffusion flame, visual flame height is 40 mm from burner tip and measurement points are height of 15, 20, 27.5, 30 mm above burner tip along radial direction. As increasing the height of the flame from burne. tip, primary particle size was increased to HAB(Height Above Burner tip)=20mm, and then decreased from HAB=27.5 mm to 30 mm. This results show the growth and oxidation processes for soot particles formed by combustion.

The Study on Effect of Local Schmidt Number on Lifted Flame and Its Propagation Velocity (국소 슈미트수가 부상화염 및 화염전파속도에 미치는 영향에 관한 연구)

  • Jeon, Minkyu;Lee, Min Jung;Jeong, Yong-Jin;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.75-76
    • /
    • 2015
  • Lifted flame stabilization mechanism can be explained with constant Schmidt number from the equation of $H^{\ast}_L/d^2_o=const{\times}v_e^{(2Sc-1)/(Sc-1)}$. In this research, a method of local Schmidt number was applied in order to measure edge flame propagation velocities, and edge flame propagation velocity was calculated from the trend between lift-off height and nozzle flow rate.

  • PDF

A Study on the Combustion Characteristics with Hydrogen Contents of SNG Fuel in Low-Swirl Combustor (저선회 연소기에서 합성천연가스(SNG) 연료의 수소함량에 따른 연소 특성 연구)

  • JEONG, HWANGHUI;KANG, KIJOONG;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.181-189
    • /
    • 2017
  • This paper describes experimental results on combustion characteristics with hydrogen contents of synthetic natural gas (SNG) in low swirl combustor. To investigate the effect of hydrogen contents for premixed SNG flame, stability map, CH chemiluminescence images, flame spectrum analysis and emission performances were measured. In the results, as the hydrogen content was increased, the lean flammable limit was expanded and the flame length was decreased. The hydrogen contents affected the flame liftoff height, and it has different tendency according to the equivalence ratio and flame shape. The change of height and length of flame according to hydrogen contents is caused by the fast burning velocity of hydrogen, which can be confirmed by GRI 3.0 reaction mechanism in PREMIX code. The intensity of $OH^*$, $CH^*$ and $C_2^*$ was confirmed by spectrum analysis of flame. As a result, the $CH^*$ intensity was not significantly different according to hydrogen content. The increase of hydrogen contents influenced positively CO and NOx emission performances.

Influence of Combustion Flame on Breakdown Characteristics of Vertical-Model Power Lines (수직배열 모델 전력선의 절연파괴 특성에 미치는 화염의 영향)

  • Park, Kwang-Seo;Kim, In-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.85-92
    • /
    • 2008
  • Occurring forest fire or burning bushes beneath overhead transmission lines have caused breakdown disturbances of the system in many countries. In this study, experiments for flashover characteristics in the simulated condition of vertical power lines were conducted so as to investigate the reduction in insulation strength caused by combustion flame. As the results of an experimental investigation, it is demonstrated that flame can reduce breakdown voltages of the model lines according to height(h) of flame. The breakdown voltages were decreased with decreasing the height(h) of flame it can be seen that the average reduction of flashover levels, in comparison with the no-flame case, are 46.2[%] for h=9[cm] and 62.5[%] for h=3[cm] when ac voltage is applied.

Preheated Air Combustion Characteristics of Partially Premixed Flame (부분 예혼합 화염의 예열공기 연소특성)

  • Lee, Seung-Young;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.65-70
    • /
    • 2001
  • OH radical and NOx have been measured in a methane-air partially premixed flame using PLIF technique to define preheated air combustion characteristics. The temperature of mixture is determined by 300K, 400K, 600K and 800K below the auto-ignition temperature respectively. Flame height increases as equivalence ratio increased. As initial enthalpy is supplied, the radius of flame was increased and much amount of yellow flame in rich equivalence ratio was observed. This is due to the faster burning velocity. Also initial oxidization begins earlier as the initial temperature of mixture increased. It means that height of premixed flame front decreased. This phenomenon can be observed OH PLIF image. The qualitative analysis of OH concentration in the PLIF image shows that overall OH concentration increases with equivalence ratio and the initial temperature of mixture increased. At the preheating temperature goes up, axial gradient of OH concentration is less steep than that of lower temperature condition. This may identify that combustion reacts continuously, so preheated air combustion can evade the local heating and make high temperature indiscriminately in the overall reaction zone.

  • PDF

A Transitional Behavior of a Premixed Flame and a Triple Flame in a Lifted Flame(II) (부상화염에서 예혼합화염과 삼지화염의 천이적 거동(II))

  • Jang Jun Young;Kim Tae Kwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.376-383
    • /
    • 2005
  • In the paper we investigate characteristics of a transitional behavior from a premixed flame to a triple flame in a lifted flame according to the change of equivalence ratio. In previous study, we showed that the stabilized laminar lifted flame regime is categorized by regimes of premixed flame, triple flame and critical flame. A gas-chromatograph is used to measure concentration field, a smoke-wire system is used to measure streak line, and a PIV system is used to measure velocity field in lifted flame. In the visualization experiment of smoke wire, the flow divergence and redirection reappeared in premixed flame as well as triple flame. Thus we cannot express the flame front of lifted flame has a behavior of triple flame with only flow divergence and redirection. In PIV measurement, flow velocity for those three flames has minimum value at the tip of flame front. To differentiate triple flame and premixed flame, $\Phi$ value of partially premixed fraction is employed. The partially premixed fraction $\Phi$ was constant in premixed flame. In critical flame small gradient appears over the whole regime. In triple flame, typical diffusion flame shape is obtained as parabolic distribution type due to diffusion flame trailing.

Studies on the Flame Temperature Measurement of the Propagating Flame (전파화염에서의 화염온도측정에 관한 연구)

  • ;;Jeung, In Seuck
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.1 no.4
    • /
    • pp.182-189
    • /
    • 1977
  • The propagating flame temperature of the Propane-Air premixture by using 30.$\mu$ and 50.$\mu$ diameter platinum sensing wires, that is, Two Wires Correction Method, Through the constant volume burining inside the 150mm diameter, 30mm height combustion chamber under the circumstances of the atomospheric pressure, and the room temperature was determined. Also the temperature distribution across High Temperature Region, i.e. Flame Front, and the temperature profile behind the flame the front have been obtained.

Tomographic Reconstruction of a Non-axisymmetric Diffusion Flame (자발광 확산 사각화염 내부 구조의 단층 진단)

  • Yang, In-Young;Ha, Kwang-Soon;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.105-115
    • /
    • 1999
  • The structure of a non-axisymmetric propane diffusion flame was investigated. Tomographic reconstruction method to convert the line-integrated self-emission data of a fuel-rich diffusion flame with square cross-section was applied to get the spatially reconstructed emission data. Modified Shepp-Logan filter and concentric squares raster were chosen for reconstructing arbitrarily shaped object in this process. Spatially reconstructed emission data were then interpreted to several physical quantities, such as flame edge, FWHM, perimeter and 3-D flame temperature distribution. Necessary assumptions were discussed and the results were interpreted. In comparison with axisymmetric flame, flame edge was developed higher, and sooting region of upstream was broader than in this non-axisymmetric one. At some height, the flame was shrunk very rapidly and finally formed circular cross-section.

  • PDF

A Study on Effects of Flame Curvature in Oscillatory Laminar Lifted-flames (진동하는 층류부상화염에서 화염곡률 효과에 관한 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Yun, Jin-Han;Keel, Sang-In
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Experiment is conducted to grasp effects of flame curvature on flame behavior in laminar lifted-jet flames. Nozzle diameters of 0.1 and 1.0mm are used to vary flame curvature of edge flame. There exist three types of edge flame oscillation. These edge flame oscillations may be caused by radial heat loss at all flame conditions, by fuel Lewis numbers near or larger than unity with the help of appreciable radial conduction heat loss, and by buoyancy effects. These are confirmed by the analysis of oscillation frequencies. It is however seen that the change of lift-off height through edge-flame oscillation is mainly due to radial heat loss irrespective of Lewis number and buoyancy.

  • PDF