• Title/Summary/Keyword: flake shaped material

Search Result 4, Processing Time 0.019 seconds

Surface Modification of Flake-Shaped Inorganic Mica and Their Cool Paint Performances (판상형 무기소재인 Mica의 표면개질 및 차열페인트의 특성 평가)

  • Park, Jeong Min;Kim, Hee Jung;Yoo, Jung Whan
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.35-38
    • /
    • 2016
  • In this study, the mica used as a thermal-insulation material was modified with a silane coupling agent, octyltriethoxysilane (OTES), to improve its hydrophobicity. The modified mica was characterized using FT-IR spectrometer, water wettability test, and water contact angle measurement. The analysis exhibits that OTES for the modified mica sample was well bonded chemically and drastically enhanced the hydrophobicity. The reflectance observed as 73.9% (mica) and 86.4% (OTES/mica), respectively, for OTES/mica was improved about 12.5% before any modifications. Also the modified mica sample showed $7.2^{\circ}C$ decrease in the thermal-insulation performance of cool paints compared to that of using unmodified mica, indicating that the modification of mica with silane coupling agents could be effective in enhancing the thermal-insulation performance of the cool paint.

A Method for Application of Ammonium-based Pretreatment Solution in Preparation of Copper Flakes Coated by Electroless Ag Plating (구리 플레이크의 무전해 은도금에서 암모늄계 구리 전처리 용액의 적용법)

  • Kim, Ji Hwan;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.57-63
    • /
    • 2015
  • In order to prepare a low-cost conductive filler material possessing improved anti-oxidation property, Ag-coated Cu flakes were fabricated and the effects of an applying method of ammonium-based pretreatment solution on the Cu flakes were analyzed. The pretreatment solution was used to remove the surface oxide layer on Cu flake. During a single-stage pretreatment process, hole-shaped defects were formed on the flake surface during the pretreatment after 2 min, and the number and size increased in proportion to the pretreatment time. In the case that Ag plating solution was injected in the pretreatment solution after the pretreatment for 2 min, the defects were also formed during Ag plating. In contrast, the defects tremendous decreased in the case that the pretreatment solution was removed after the first pretreatment for 2 min and the Ag plating proceeded after the second pretratment using a low concentration pretreatment solution. As the final result, the 15 wt% Ag-coated Cu flake sample which was fabricated using the single-stage pretreatment oxidized at $166^{\circ}C$, but the sample fabricated by the double-stage pretreatment oxidized at $224^{\circ}C$, indicating definitely improved anti-oxidation property.

Electromagnetic Wave Absorption Properties in Fe-based Nanocrystalline P/M Sheets with Carbon Black and BaTiO3 Additives

  • Kim, Mi-Rae;Park, Won-Wook
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.33-36
    • /
    • 2009
  • In order to increase the magnetic loss for electromagnetic(EM) wave absorption, the soft magnetic $Fe_{73}Si_{16}B_7Nb_3Cu_1$(at%) alloy strip was used as the basic material in this study. The melt-spun strip was pulverized using an attrition mill, and the pulverized flake-shaped powder was crystallized at $540^{\circ}C$ for 1h to obtain the optimum grain size. The Fe-based powder was mixed with 2 wt% $BaTiO_3$, $0.3{\sim}0.6$ wt% carbon black, and polymer-based binders for the improvement of electromagnetic wave absorption properties. The mixture powders were tape-cast and dried to form the absorption sheets. After drying at $100^{\circ}C$ for 1h, the sheets of 0.5 mm in thickness were made by rolling at $60^{\circ}C$, and cut into toroidal shape to measure the absorption properties of samples. The characteristics including permittivity, permeability and power loss were measured using a Network Analyzer(N5230A). Consequently, the properties of electromagnetic wave absorber were improved with the addition of both $BaTiO_3$ and carbon black powder, which was caused by the increased dielectric loss of the additive powders.

Push-out bond strength and intratubular biomineralization of a hydraulic root-end filling material premixed with dimethyl sulfoxide as a vehicle

  • Ju-Ha Park;Hee-Jin Kim;Kwang-Won Lee;Mi-Kyung Yu;Kyung-San Min
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.1
    • /
    • pp.8.1-8.8
    • /
    • 2023
  • Objectives: This study was designed to evaluate the parameters of bonding performance to root dentin, including push-out bond strength and dentinal tubular biomineralization, of a hydraulic bioceramic root-end filling material premixed with dimethyl sulfoxide (Endocem MTA Premixed) in comparison to a conventional powder-liquid-type cement (ProRoot MTA). Materials and Methods: The root canal of a single-rooted premolar was filled with either ProRoot MTA or Endocem MTA Premixed (n = 15). A slice of dentin was obtained from each root. Using the sliced specimen, the push-out bond strength was measured, and the failure pattern was observed under a stereomicroscope. The apical segment was divided into halves; the split surface was observed under a scanning electron microscope, and intratubular biomineralization was examined by observing the precipitates formed in the dentinal tubule. Then, the chemical characteristics of the precipitates were evaluated with energy-dispersive X-ray spectroscopic (EDS) analysis. The data were analyzed using the Student's t-test followed by the Mann-Whitney U test (p < 0.05). Results: No significant difference was found between the 2 tested groups in push-out bond strength, and cohesive failure was the predominant failure type. In both groups, flake-shaped precipitates were observed along dentinal tubules. The EDS analysis indicated that the mass percentage of calcium and phosphorus in the precipitate was similar to that found in hydroxyapatite. Conclusions: Regarding bonding to root dentin, Endocem MTA Premixed may have potential for use as an acceptable root-end filling material.