• Title/Summary/Keyword: flagellin

Search Result 31, Processing Time 0.024 seconds

A tdcA Mutation Reduces the Invasive Ability of Salmonella enterica Serovar Typhimurium

  • Kim, Minjeong;Lim, Sangyong;Kim, Dongho;Choy, Hyon E.;Ryu, Sangryeol
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.389-395
    • /
    • 2009
  • We previously observed that the transcription of some flagellar genes decreased in Salmonella Typhimurium tdcA mutant, which is a gene encoding the transcriptional activator of the tdc operon. Since flagella-mediated bacterial motility accelerates the invasion of Salmonella, we have examined the effect of tdcA mutation on the invasive ability as well as the flagellar biosynthesis in S. Typhimurium. A tdcA mutation caused defects in motility and formation of flagellin protein, FliC in S. Typhimurium. Invasion assays in the presence of a centrifugal force confirmed that the defect of flagellum synthesis decreases the ability of Salmonella to invade into cultured epithelial cells. In addition, we also found that the expression of Salmonella pathogenicity island 1 (SPI1) genes required for Salmonella invasion was down-regulated in the tdcA mutant because of the decreased expression of fliZ, a positive regulator of SPI1 transcriptional activator, hilA. Finally, the virulence of a S. Typhimurium tdcA mutant was attenuated compared to a wild type when administered orally. This study implies the role of tdcA in the invasion process of S. Typhimurium.

Diagnosis on sudden death cases during summer season and isolation of Clostridium novyi (하절기 급사 돼지의 Clostridium novyi 진단 및 분리)

  • Jeong, Chang-Gi;Seo, Byoung-Joo;Kim, Won-Il
    • Korean Journal of Veterinary Service
    • /
    • v.39 no.2
    • /
    • pp.131-136
    • /
    • 2016
  • Clostridium novyi (C. novyi) is a gram positive, non-capsulated, motile, obligatory anaerobe that produces endospores. Both C. novyi type A and B produce a bacteriophage encoded lethal alpha toxin which belongs to a family of large clostridial cytotoxins. These large clostridial cytotoxins of C. novyi bind to the uncharacterized receptors on host vascular endothelial cells, which leads to the loss of integrity of the vascular endothelium with subsequent edema, refractory hypotension, organ failure, and sudden death. A total of 13 sudden death cases were submitted to Chonbuk National University-Veterinary Diagnostic Center between June and October, 2015. The samples, mainly liver, were collected in sterile vials after necropsy and processed within 12~24 hours for diagnosis, isolation and identification of C. novyi. All of the 4 gram positive samples showed amplification by PCR. Out of 4 positive samples, 3 were detected to be C. novyi type B and 1 was detected as C. novyi type A. Based on the 16S rDNA sequence analysis, 1 case (150564) showed 99% similarity with C. novyi type A while other 3 cases (150388, 150557 and 150775) presented 99% similarity with C. novyi type B. Based on the results, C. novyi was found to be prevalent in Korean pig farms and causes sudden death to finishing pigs or sows during summer season. Thus, C. novyi should be considered for differential diagnosis on sudden death cases during the summer season.

Direct Regulation of TLR5 Expression by Caveolin-1

  • Lim, Jae Sung;Nguyen, Kim Cuc Thi;Han, Jung Min;Jang, Ik-Soon;Fabian, Claire;Cho, Kyung A
    • Molecules and Cells
    • /
    • v.38 no.12
    • /
    • pp.1111-1117
    • /
    • 2015
  • Toll-like receptor 5 (TLR5) is a specific receptor for microbial flagellin and is one of the most well-known receptors in the TLR family. We reported previously that TLR5 signaling is well maintained during aging and that caveolin-1 may be involved in TLR5 signaling in aged macrophages through direct interactions. Therefore, it is important to clarify whether caveolin-1/TLR5 interactions affect TLR5 expression during aging. To assess the effect of caveolin-1 on TLR5, we analyzed TLR5 expression in senescent fibroblasts and aged tissues expressing high levels of caveolin-1. As expected, TLR5 mRNA and protein expression was well maintained in senescent fibroblasts and aged tissues, whereas TLR4 mRNA and protein were diminished in those cells and tissues. To determine the mechanism of caveolin-1-dependent TLR5 expression, we examined TLR5 expression in caveolin-1 deficient mice. Interestingly, TLR5 mRNA and protein levels were decreased dramatically in tissues from caveolin-1 knockout mice. Moreover, overexpressed caveolin-1 in vitro enhanced TLR5 mRNA through the MAPK pathway and prolonged TLR5 protein half-life through direct interaction. These results suggest that caveolin-1 may play a crucial role in maintaining of TLR5 by regulating transcription systems and increasing protein half-life.

Carbon Storage Regulator A (csrA) Gene Regulates Motility and Growth of Bacillus licheniformis in the Presence of Hydrocarbons

  • Angel, Laura Iztacihuatl Serrano;Segura, Daniel;Jimenez, Jeiry Toribio;Barrera, Miguel Angel Rodriguez;Pineda, Carlos Ortuno;Ramirez, Yanet Romero
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.185-192
    • /
    • 2020
  • The global carbon storage regulator (Csr) system is conserved in bacteria and functions as a regulator in the exponential and stationary phases of growth in batch culture. The Csr system plays a role in the central carbon metabolism, virulence, motility, resistance to oxidative stress, and biofilm formation. Although the Csr was extensively studied in Gram negative bacteria, it has been reported only in the control of motility in Bacillus subtilis among Gram positive bacteria. The goal of this study was to explore the role of the csrA gene of Bacillus licheniformis M2-7 on motility and the bacterial ability to use hydrocarbons as carbon source. We deleted the csrA gene of B. licheniformis M2-7 using the plasmid pCsr-L, harboring the spectinomycin cassette obtained from the plasmid pHP45-omega2. Mutants were grown on culture medium supplemented with 2% glucose or 0.1% gasoline and motility was assessed by electron microscopy. We observed that CsrA negatively regulates motility by controlling the expression of the hag gene and the synthesis of flagellin. Notably, we showed the ability of B. licheniformis to use gasoline as a unique carbon source. Our results demonstrated that CsrA is an indispensable regulator for the growth of B. licheniformis M2-7 on gasoline.

Interruption of Helicobacter pylori-Induced NLRP3 Inflammasome Activation by Chalcone Derivatives

  • Choi, Hye Ri;Lim, Hyun;Lee, Ju Hee;Park, Haeil;Kim, Hyun Pyo
    • Biomolecules & Therapeutics
    • /
    • v.29 no.4
    • /
    • pp.410-418
    • /
    • 2021
  • Helicobacter pylori causes chronic gastritis through cag pathogenicity island (cagPAI), vacuolating cytotoxin A (VacA), lipopolysaccharides (LPS), and flagellin as pathogen-related molecular patterns (PAMPs), which, in combination with the pattern recognition receptors (PRRs) of host cells promotes the expression and secretion of inflammation-causing cytokines and activates innate immune responses such as inflammasomes. To identify useful compounds against H. pylori-associated gastric disorders, the effect of chalcone derivatives to activate the nucleotide-binding oligomerization domain (NOD)-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome was examined in an H. pylori-infected human monocytic THP-1 cell line in this study. Among the five synthetic structurally-related chalcone derivatives examined, 2'-hydroxy-4',6'-dimethoxychalcone (8) and 2'-hydroxy-3,4,5-trimethoxychalcone (12) strongly blocked the NLRP3 inflammasome in H. pylori-infected THP-1 cells. At 10 μM, these compounds inhibited the production of active IL-1β, IL-18, and caspase-1, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization, but did not affect the expression levels of NLRP3, ASC, and pro-caspase-1. The interruption of NLRP3 inflammasome activation by these compounds was found to be mediated via the inhibition of the interleukin-1 receptor-associated kinase 4 (IRAK4)/IκBα/NF-κB signaling pathway. These compounds also inhibited caspase-4 production associated with non-canonical NLRP3 inflammasome activation. These results show for the first time that certain chalcones could interrupt the activation of the NLRP3 inflammasome in H. pylori-infected THP-1 cells. Therefore, these chalcones may be helpful in alleviating H. pylori-related inflammatory disorders including chronic gastritis.

NLRC4 Inflammasome-Mediated Regulation of Eosinophilic Functions

  • Ilgin Akkaya;Ece Oylumlu;Irem Ozel;Goksu Uzel;Lubeyne Durmus;Ceren Ciraci
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.42.1-42.20
    • /
    • 2021
  • Eosinophils play critical roles in the maintenance of homeostasis in innate and adaptive immunity. Although primarily known for their roles in parasitic infections and the development of Th2 cell responses, eosinophils also play complex roles in other immune responses ranging from anti-inflammation to defense against viral and bacterial infections. However, the contributions of pattern recognition receptors in general, and NOD-like receptors (NLRs) in particular, to eosinophil involvement in these immune responses remain relatively underappreciated. Our in vivo studies demonstrated that NLRC4 deficient mice had a decreased number of eosinophils and impaired Th2 responses after induction of an allergic airway disease model. Our in vitro data, utilizing human eosinophilic EoL-1 cells, suggested that TLR2 induction markedly induced pro-inflammatory responses and inflammasome forming NLRC4 and NLRP3. Moreover, activation by their specific ligands resulted in caspase-1 cleavage and mature IL-1β secretion. Interestingly, Th2 responses such as secretion of IL-5 and IL-13 decreased after transfection of EoL-1 cells with short interfering RNAs targeting human NLRC4. Specific induction of NLRC4 with PAM3CSK4 and flagellin upregulated the expression of IL-5 receptor and expression of Fc epsilon receptors (FcεR1α, FcεR2). Strikingly, activation of the NLRC4 inflammasome also promoted expression of the costimulatory receptor CD80 as well as expression of immunoregulatory receptors PD-L1 and Siglec-8. Concomitant with NLRC4 upregulation, we found an increase in expression and activation of matrix metalloproteinase (MMP)-9, but not MMP-2. Collectively, our results present new potential roles of NLRC4 in mediating a variety of eosinopilic functions.

Effects of all-trans retinoic acid on expression of Toll-like receptor 5 on immune cells (All-trans retinoic acid가 면역세포의 Toll-like receptor 5 발현에 미치는 영향)

  • Kim, Ki-Hyung;Park, Sang-Jun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.6
    • /
    • pp.481-489
    • /
    • 2010
  • Introduction: TLR-5, a member of the toll-like receptor (TLR) family, is a element of the type I transmembrane receptors, which are characterized by an intracellular signaling domain homolog to the interleukin-1 receptor. These receptors recognize microbial components, particularly bacterial flagellin. All-trans retinoic acid (atRA, tretinoin), a natural metabolite of vitamin A, acts as a growth and differentiation factor in many tissues, and is also needed for immune functions. In this study, THP-1 human macrophage-monocytes were used to examine the mechanisms by which atRA regulated the expression of TLR-5. Because the molecular mechanism underlying this regulation at the transcriptional level is also unclear, this study examined which putative transcription factors are responsible for TLR-5 expression by atRA in immune cells. Materials and Methods: This study examined whether atRA induces the expression of TLR-5 in THP-1 cells using reverse transcription-polymerase chain reaction (RT-PCR), and which transcription factors are involved in regulating the TLR-5 promoter in RAW264.7 cells using a reporter assay system. Western blot analysis was used to determine which signal pathway is involved in the expression of TLR-5 in atRA-treated THP-1 cells. Results: atRA at a concentration of 10 nM greatly induced the expression of TLR-5 in THP-1 cells. Human TLR-5 promoter contains three Sp-1/GC binding sites around -50 bp and two NF-kB binding sites at -380 bp and -160 bp from the transcriptional start site of the TLR-5 gene. Sp-1/GC is primarily responsible for the constitutive TLR-5 expression, and may also contribute to NF-kB at -160 bp to induce TLR-5 after atRA stimulation in THP-1 cells. The role of NF-kB in TLR-5 expression was further confirmed by inhibitor pyrrolidine dithiocarbamate (PDTC) experiments, which greatly reduced the TLR-5 transcription by 70-80%. Conclusion: atRA induces the expression of the human TLR-5 gene and NF-kB is a critical transcription factor for the atRA-induced expression of TLR-5. Accordingly, it is conceivable that retinoids are required for adequate innate and adaptive immune responses to agents of infectious diseases. atRA and various synthetic retinoids have been used therapeutically in human diseases, such as leukemia and other cancers due to the antiproliferative and apoptosis inducing effects of retinoids. Therefore, understanding the molecular regulatory mechanism of TLR-5 may assist in the design of alternative strategies for the treatment of infectious diseases, leukemia and cancers.

Analysis of Antibodies Against Lyme Disease Agent, Borrelia burgdorferi, in Sera from Patients with Unknown Fever (열성질환 환자에서 라임병균 Borrelia burgdorferi 감염증 진단을 위한 혈청학적인 분석)

  • 김영미;김종배
    • Biomedical Science Letters
    • /
    • v.3 no.2
    • /
    • pp.95-105
    • /
    • 1997
  • Currently, the laboratory diagnosis for lyme disease have been performed with the detection of antibodies against Borrelia burgdorferi. However there might be some difficulties in the interpretation of obtained results due to the usage of foreign isolates as an antigen in the test. Therefore the optimization of serological tests with Korean isolates of B. burgdorferi as an antigen would be needed to establish the standardized diagnostic method for the detection of antibodies against B. burgdorferi infection. In this study, the optimization of ELISA was investigated with experimentally challenged rabbit sera and sonicated B. burgdorferi antigens of Korean isolates. Of 217 human patient's sera with unknown fever, the mean seropositivities in ELISA, done under the optimized conditions obtained in this study, were found to be about 8% against B. burgdorferi sensu late, showing the highest seropositivity of 14.3% against B. afzelii. In immunoblotting assay with ELISA-positive human sera, the major reactive bands were 41kDa (flagellin) which might be the indication of early infection, and 27kDa, 31kDa (OspA), 34kDa (OspB) which are the characteristics of late infection. Obtained results in this study might strongly indicate the possibility of B. burgdorferi infections in Korea.

  • PDF

Pathogen Associated Molecular Pattern (PAMP)-Triggered Immunity Is Compromised under C-Limited Growth

  • Park, Hyeong Cheol;Lee, Shinyoung;Park, Bokyung;Choi, Wonkyun;Kim, Chanmin;Lee, Sanghun;Chung, Woo Sik;Lee, Sang Yeol;Sabir, Jamal;Bressan, Ray A.;Bohnert, Hans J.;Mengiste, Tesfaye;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.40-50
    • /
    • 2015
  • In the interaction between plants and pathogens, carbon (C) resources provide energy and C skeletons to maintain, among many functions, the plant immune system. However, variations in C availability on pathogen associated molecular pattern (PAMP) triggered immunity (PTI) have not been systematically examined. Here, three types of starch mutants with enhanced susceptibility to Pseudomonas syringae pv. tomato DC3000 hrcC were examined for PTI. In a dark period-dependent manner, the mutants showed compromised induction of a PTI marker, and callose accumulation in response to the bacterial PAMP flagellin, flg22. In combination with weakened PTI responses in wild type by inhibition of the TCA cycle, the experiments determined the necessity of C-derived energy in establishing PTI. Global gene expression analyses identified flg22 responsive genes displaying C supply-dependent patterns. Nutrient recycling-related genes were regulated similarly by C-limitation and flg22, indicating re-arrangements of expression programs to redirect resources that establish or strengthen PTI. Ethylene and NAC transcription factors appear to play roles in these processes. Under C-limitation, PTI appears compromised based on suppression of genes required for continued biosynthetic capacity and defenses through flg22. Our results provide a foundation for the intuitive perception of the interplay between plant nutrition status and pathogen defense.

Immunocontraceptive Effects in Male Rats Vaccinated with Gonadotropin-Releasing Hormone-I and -II Protein Complex

  • Kim, Yong-Hyun;Park, Byung-Joo;Ahn, Hee-Seop;Han, Sang-Hoon;Go, Hyeon-Jeong;Lee, Joong-Bok;Park, Seung-Yong;Song, Chang-Seon;Lee, Sang-Won;Choi, In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.658-664
    • /
    • 2019
  • Immunocontraception has been suggested as an optimal alternative to surgical contraception in animal species. Many immunocontraceptive vaccines have been designed to artificially produce antibodies against gonadotropin-releasing hormone-I (GnRH-I) which remove GnRH-I from the vaccinated animals. A deficiency of GnRH-I thereafter leads to a lack of gonadotropins, resulting in immunocontraception. In this study, we initially developed three immunocontraceptive vaccines composed of GnRH-I, GnRH-II, and a GnRH-I and -II (GnRH-I+II) complex, conjugated to the external domain of Salmonella Typhimurium flagellin. As the GnRH-I+II vaccine induced significantly (p < 0.01) higher levels of anti-GnRH-I antibodies than the other two vaccines, we further evaluated its immunocontraceptive effects in male rats. Mean testis weight in rats (n = 6) inoculated twice with the GnRH-I+II vaccine at 2-week intervals was significantly (p < 0.01) lower than in negative control rats at 10 weeks of age. Among the six vaccinated rats, two were non-responders whose testes were not significantly reduced when compared to those of negative control rats. Significantly smaller testis weight (p < 0.001), higher anti-GnRH-I antibody levels (p < 0.001), and lower testosterone levels (p < 0.001) were seen in the remaining four responders compared to the negative control rats at the end of the experiments. Furthermore, seminiferous tubule atrophy and spermatogenesis arrest were found in the testis tissues of responders. Therefore, the newly developed GnRH-I+II vaccine efficiently induced immunocontraception in male rats. This vaccine can potentially also be applied for birth control in other animal species.