• Title/Summary/Keyword: fixed-point DSP

Search Result 96, Processing Time 0.03 seconds

Real-time Implementation of a Multi-channel G.729A Speech Coder on a 16 Bit Fixed-point DSP (16 비트 고정 소수점 DSP를 이용한 다채널 G.729A음성 부호화기의 실시간 구현)

  • 안도건;유승균;최용수;이재성;강태익;박성현
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.45-51
    • /
    • 2000
  • This paper describes real-time implementation of a multi-channel G.729A speech coder using a 16 bit fixed-point Digital Signal Processor (DSP) and its application to a Voice Mailing Service (VMS) system. TMS320C549 by Texas Instruments was used as a fixed point DSP chip and a 4 channel G.729A coder was implemented on the chip. The implemented coder required 14.5 MIPS for the encoder and 3.6 MIPS for the decoder at each channel. In addition, memories required by the coder were 9.88K words and 1.69K words for code and data sections, respectively. As a result, the developed VMS system that accommodates two DSP chips was able to support totally 8 channels. Experimental results showed that the our multi-channel coder passes all of test vectors provided by ITU-T.

  • PDF

A study about rotor position estimation enhance using IQ math in DSP (DSP 내의 IQ math를 이용한 회전자 위치 추정 정밀도 향상에 관한 연구)

  • Jang, Joong-Hack;Lee, Kwang-Ho;Hong, Sun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.98-100
    • /
    • 2005
  • DSPs used at motor control are usually fixed point processor. They need scaling because they cannot excute floating point calculation. Scaling for floating point calculation makes the DSP's speed down, complex coding and etc. Therefore the IQ math is adopted. IQ math makes the fixed point processor possible to calculate the floating point math. In addition, IQ math can reduce memory usage and be more faster than that without IQ math. It seems that IQ math is appropriate in motor position control. In comparison of the position calculation between the IQ math, math function and the sine table, the method using IQ math is superior than other methods.

  • PDF

PV System using HIL System (Hardware-In-the-Loop 시스템을 이용한 태양광 시스템 연구)

  • Kim, Ju-Yeop;Choy, Ick;Kim, Byeong-Man
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.665-665
    • /
    • 2005
  • The existing DSP for utility interactive photovoltaic generation system control generally uses floating point process type. Because it is easy to use for number crunching, however, it is too late and too expensive. Fixed point process DSP TMS320F2812, has high control speed and is rather inexpensive. A very complicated real system can be simulated using hardware-in-the-loop (HIL) system in a virtual environment Therefore, HIL system can speed up research and development process with a little effort. Also current DSP for utility interactive photovoltaic generation system adopts floating point process type, which is easy to use for number crunching. However, fixed point process DSF, TMS320F2812, has high control speed and is rather inexpensive. This paper presents more efficient method for MPPT control using TMS320F2812 along with HIL System.

  • PDF

Development of Real-Time Ventricular Fibrillation Detection System based on DSP Processor (DSP 기반의 실시간 심실세동 검출 시스템 개발)

  • Song, Mi-Hye;Jang, Bong-Ryeol;Lee, Kyoung-Joung
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.873-874
    • /
    • 2006
  • In this paper, we have developed a ventricular fibrillation detection system based on DSP processor. The developed system was able to detect VF in real time correctly and quickly. We compared the performance of the floating point simulation with that of fixed point simulation. The computational cost of fixed point simulation was remarkably reduced than that of floating point simulation.

  • PDF

A study on the extended fixed-point arithmetic computation for MPEG audio data processing (MPEG Audio 데이터 처리를 위한 확장된 고정소수점 연산처리에 관한 연구)

  • 한상원;공진흥
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.250-253
    • /
    • 2000
  • In this paper, we Implement a new arithmetic computation for MPEG audio data to overcome the limitations of real number processing in the fixed-point arithmetics, such as: overheads in processing time and power consumption. We aims at efficiently dealing with real numbers by extending the fixed-point arithmetic manipulation for floating-point numbers in MPEG audio data, and implementing the DSP libraries to support the manipulation and computation of real numbers with the fixed-point resources.

  • PDF

Design and Implementation of a DSP Chip for Portable Multimedia Applications (휴대 멀티미디어 응용을 위한 DSP 칩 설계 및 구현)

  • 윤성현;선우명훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.12
    • /
    • pp.31-39
    • /
    • 1998
  • This paper presents the design and implementation of a new multimedia fixed-point DSP (MDSP) core for portable multimedia applications. The MDSP instruction set is designed through the analysis of multimedia algorithms and DSP instruction sets. The MDSP architecture employs parallel processing techniques, such as SIMD and vector processing as well as DSP techniques. The instruction set can handle various data formats and MDSP can perform two MAC operations in parallel. The switching network and packing network can increase the performance by overlapping data rearrangement cycles with computation cycles. We have designed Verilog HDL models and the 0.6 $\mu\textrm{m}$ Samsung KG75000 SOG library is used. The total gate count is 68,831 and the clock frequency is 30 MHz.

  • PDF

Real-Time Implementation of the 8 kbps CS-ACELP (DSP16210을 이용한 8kbps CS-ACELP 의 실시간 구현)

  • 박지현;박성일정원국임병근
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1211-1214
    • /
    • 1998
  • Real-time implementation of Conjugate-Structure Algebraic CELP(CS-ACELP) is presented. ITU-T Study Group(SG) 15 has standardized the CS-ACELP speech coding algorithm as G.729. A real-time implementation of the CS-ACELP is achieved using 16 bit fixed point DSP16210 Digital Signal Processor (DSP) of Lucent Technologies. The speech coder has been implemented in the bit-exact manner using the fixed point CS-ACELP C source which is the part of the G.729 standard. To provide a multi-channel vocoder solution to digital communication system, we try to minimize the complexity(e.g., MIPS, ROM, RAM) of CS-ACELP. Our speech coder shows 15.5 MIPS in performance which enables 4 channel CS-ACELP to be processed with one DSP16210.

  • PDF

Real-time Implementation of Speech and Channel Coder on a DSP Chip for Radio Communication System (무선통신 적용을 위한 단일 DSP칩상의 음성/채널 부호화기 실시간 구현)

  • Kim Jae-Won;Sohn Dong-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1195-1201
    • /
    • 2005
  • This paper deals with procedures and results for teal time implementation of G.729 speech coder and channel coder including convolution codec, viterbi decoder, and interleaver using a fixed point DSP chip for radio communication systems. We described the method for real-time implementation based on integer simulation results and explained the implemented results by quality performance and required complexity for real-time operation. The required complexity was 24MIPS and 9MIPS in computational load, and 12K words and 4K words in execution code length for speech and channel. The functional evaluation was performed into two steps. The one was bit exact comparison with a fixed point C code, the other was executed by actual speech samples and error test vectors. Unlik other results such as individual implementation, We implemented speech and channel coders on a DSP chip with 160MIPS computation capability and 64 K words memory on chip. This results outweigh the conventional methods in the point of system complexity and implementation cost for radio communication system.

Development of Interference Cancellation Algorithm for WCDMA Repeater under Fixed-Point Operation (고정 소수점 연산을 이용한 WCDMA 중계기에서의 귀환 신호제거 알고리즘의 개발)

  • Jung, Hee-Seok;Yun, Kee-Bang;Kim, Ki-Doo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.1
    • /
    • pp.95-103
    • /
    • 2009
  • We improve the performance of WCDMA repeater by cancelling the feedback interference radio signal under the fixed point implementation. Floating-point DSP or FPGA to implement the ICS algorithm may have an disadvantage of high cost, To solve this problem, we suggest the ICS algorithm based on LMS under fixed point operation, and show the validity of our results by comparing with the floating-point results through numerical simulation.

Real-time Implementation of CS-ACELP Speech Coder for IMT-2000 Test-bed (IMT-2000 Test-bed 상에서 CS-ACELP 음성부호화기 실시간 구현)

  • 김형중;최송인;김재원;윤병식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.3
    • /
    • pp.335-341
    • /
    • 1998
  • In this paper, we present a real time implementation of CS-ACELP(Conjugate Structure Algebraic Code Excited Linear Prediction) speech coder. ITU-T has standardized the CS-ACELP algorithm as G.729. Areal-time implementation of CS-ACELP speech coder algorithm is achieved using 16 bit fixed-point DSP chip. To implement in fixed-point DSP Chip, integer simulation of CS-ACELP algorithm is used. Furthermore. input/output function and communication function included in CS-ACELP speech coder is described. We develope CS-ACELP speech coder in DSP evaluation board and evaluate in IMT-2000 Test-bed.

  • PDF