• 제목/요약/키워드: fixed-bed reactor

검색결과 245건 처리시간 0.03초

메탄올 개질반응의 정상 및 동특성 모사 (A simulation of steady and dynamic states of methanol reforming reaction)

  • 김경미;최영순;송형근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.395-398
    • /
    • 1989
  • A two dimensional pseudo-homogeneous model for the methanol reforming reaction was developed and its steady and dynamic states were studied by a computer simulation. The reactor tube diameter, the catalyst density in the fixed bed, the feed flow rate, the feed temperature and the external temperature were chosen to be adjusted to determine the length of the reactor. The dynamics of the reactor showed that the system was highly nonlinear and sensitive to the feed disturbances.

  • PDF

생물막 유동층 반응기에서 미생물 성상에 따른 속도론적 고찰 (A Kinetic Study with Biomass Characteristics in Fluidized-Bed Biofilm Reactor.)

  • 김동석;안갑환이민규송승구
    • KSBB Journal
    • /
    • 제6권2호
    • /
    • pp.115-121
    • /
    • 1991
  • 본 연구의 목적은 생물막 유동층 반응기내에서 높은 유기물 부하를 처리하는데 있어 지지체에 부착된 미생울의 특성과 유기물의 처리효율을 조사하는데 있다. 실험은 글루코오즈를 주 기질로 한 합성폐수를 이용하여, 상향유속은 0.47cm / sec, 체류시간을 5시간, 운전 온도는 $22{\pm}1{\circ}C$, pH는 $7{\pm}0.1$로 일정하게 하고 유기물 부하를 $10kgCOD\;/\;{\textrm{m}^3}$.day에서 $80kgCOD\;/\;{\textrm{m}^3}$.day로 증가시켰을 때, 각각 95%, 73%의 높은 COD 처리효율을 얻었다. 고정 생물막 반응기에 사용된 Andrew의 유기물 제거율 모델을 본 생물막 유동층 반응기에 적용시켜본 결과, 실제 유기물 제거율과 예측한 유기물 제거율은 85% 정도로 일치하였다.

  • PDF

우슬(Achyranthes Root) 탕제 후 얻어진 폐한약재 부산물의 열분해 (Pyrolysis of Waste Oriental Medicine Byproduct Obtained from the Decoction Process of Achyranthes Root)

  • 박지희;정재훈;이지영;김영민;박영권
    • 공업화학
    • /
    • 제29권4호
    • /
    • pp.474-478
    • /
    • 2018
  • Thermal decomposition of waste Achyranthes Root (WAR) emitted from its decoction process was investigated using a TG analyzer and a fixed-bed reactor. The WAR had the larger C and fixed carbon content than fresh AR (FAR) due to the extraction of hemicelluloses from FAR during decoction process. Thermogravimetric (TG) analysis results also revealed the elimination of hemicellulose by its decoction. Relatively high contents of the cellulose and lignin made high contents of their typical pyrolyzates, such as acids, ketones, furans, and phenols, in the pyrolysis of WAR using the fixed-bed reactor. The increase of pyrolysis temperature from 400 to $500^{\circ}C$ increased yields of oil and gas due to the more effective cracking efficiency of WAR at a higher temperature. The chemical composition of product oil was also changed by applying the higher pyrolysis temperature, which increased the selectivity to furans and phenols.

A Study on Applying PID Control to a Downdraft Fixed Bed Gasifier using Wood Pellets

  • Park, Bu-Gae;Park, Seong-Mi;Park, Sung-Jun
    • 한국산업융합학회 논문집
    • /
    • 제25권2_1호
    • /
    • pp.149-159
    • /
    • 2022
  • Biomass is material that is comprehensive of carbonaceous materials from plants, crops, animals, and algae. It has been used as one of heating fuel since the beginning the emergence of human beings. Since biomass is regarded as carbon-neutral energy source, it has recently been attracting attention as an energy source that can replace fossil fuels. The most widely applied field is distributed power generation, and a method of generating electric power by driving an internal combustion engine with syngas produced by gasifier is chosen. While the composition of the syngas produced in gasifiers changes depending on the air flowing into the reactor, commercialized gasifiers so far do not control the air flowing into the reactor. When the inner pressure in reactor increases, the air sucked into the reactor is reduced. That change of amount of air makes the composition of syngas varied. Those variations of composition of syngas cause the incomplete combustion hence the power output of engine drops, which is a critical weakness of the gasification technology. In this paper, to produce the uniformly composed syngas, PID control is applied. The result was shown when the amount of air into the reactor is supplied with the constant amount using PID control, the standard deviation of caloric values of syngas is around 2[%] of its average value. Meanwhile the gasifier without PID control has the standard deviation of caloric values is around 7[%]. Therefore, Adopting PID control to supply constant air to the gasifier is highly desirable.

다공성 촉매를 고려한 단일튜브 내의 수증기-메탄 개질에 관한 수치해석 연구 (Numerical Study on Steam-Methane Reaction Process in a Single Tube Considering Porous Catalyst)

  • 문주현;이성혁;윤기봉;김지윤
    • 한국가스학회지
    • /
    • 제18권4호
    • /
    • pp.56-62
    • /
    • 2014
  • 본 연구에서는 촉매가 들어있는 고정층 반응로의 단일 개질관에 대하여 전산 유체 해석(Fluent ver. 13.0)을 수행하여 열/유동 특성을 파악하고, 주입 가스에 따른 추출 가스의 종류를 다공성에 따라 예측하였다. 촉매 형상을 모델링하기 위하여, 개질관 내부에 있는 촉매를 모두 다공성 물질이라고 가정하고, 수정된 Eugun 식을 해석에 적용하였다. 유체의 공극률을 기준으로 0.545, 0.409, 그리고 0.403로 설정하고, 결과를 비 다공성인 경우와 비교하였다. 수치해석 결과, 개질관 벽면의 온도는 흡열반응과 주변 열전달로 인하여 개질관의 온도보다 높게 나타나며, 수소 생성량도 다소 증가했다. 촉매의 공극률이 증가 하게 될 경우, 압력 강하로 인하여 관 중심부 온도 및 수소 생성량이 현저하게 감소하는 경향을 보였다.

간접 포기식 유동상의 이상적 설계에 관한 연구 (A Study on the Optimal Design in the Indirect Aerated Fluidized Bed)

  • 안송엽;김환홍;권희태
    • 한국환경과학회지
    • /
    • 제8권1호
    • /
    • pp.95-100
    • /
    • 1999
  • Process intensification without any increase in bed requires the exploitation of fluid mechanical phenomena as the basis for elegant solutions to the process engineering problems which result from the need to retain and control the immobilized biomass, and for biomass recovery. The fluidized bed biological reactor provides a solution to these needs. The wastewater treatment characteristics of the fluidized bed was filled with sand media. Indirect aeration were studied experimentally. The researcher was filled with sand particle size(0.60~0.42mm) in three reactors with different section area(A)/height(H), in the state BOD loading 4.5kg-$BOD_5/m^3$ㆍd, and under the fixed state of hydraulic retention time for around 32 minutes.

  • PDF

유전가열물질을 코팅한 활성탄소섬유의 휘발성 유기화합물 흡착 및 마이크로파 인가에 의한 탈착 연구 (A Study on Adsorption of Volatile Organic Compound by Activated Carbon Fiber Coated with Dielectric Heating Element and Desorption by Applying Microwave)

  • 김상국;장예림
    • 한국대기환경학회지
    • /
    • 제25권2호
    • /
    • pp.122-132
    • /
    • 2009
  • Adsorption of toluene by activated carbon fiber (ACF) coated with dielectric heating element and desorption by applying microwave were investigated. In order to prepare adsorbent so that VOC can be desorbed by microwave heating, fine dielectric heating element with nano size was coated on the surface of the ACF using hybrid binder. Eight adsorbents (ACF-DHE, Activated Carbon Fiber coated with Dielectric Heating Element) were prepared with different amount of dielectric heating element, kinds of hybrid binder, and solvent. In order to investigate adsorption characteristics, BET surface area, pore volume, and average pore size were measured for each adsorbent including ACF. Breakthrough experiments with toluene concentration, flow rate, bed length using fixed bed reactor were performed to investigate adsorbality of adsorbent, and results were compared with that of the ACF. Desorption reactor was constructed with modified microwave oven to investigate heating effect on ACF-DHE by applying microwave power. Each adsorbent saturated with toluene were put into desorption reactor. Composition of desorbed gas generated by applying controlled microwave power to reactor was measured. Up to now, hot air desorption method has been used. Experimental results showed that desorption method with new adsorbent prepared by coating dielectric heating element on ACF can be used for industrial application.

Characterisation of the pyrolysis oil derived from bael shell (aegle marmelos)

  • Bardalai, Monoj;Mahanta, Dimbendra Kumar
    • Environmental Engineering Research
    • /
    • 제21권2호
    • /
    • pp.180-187
    • /
    • 2016
  • In the present work, bael shell (aegle marmelos) is used as the feedstock for pyrolysis, using a fixed bed reactor to investigate the characteristics of the pyrolysis oil. The product yields, e.g., liquid, char and gases are produced from the biomass at different temperatures with the particle size of 0.5-1.0 mm, at the heating rate of $150^{\circ}C/min$. The maximum liquid yield, i.e., 36.23 wt.%, was found at $5500^{\circ}C$. Some physical properties of the pyrolysis oil such as calorific value, viscosity, density, pH, flash point and fire point are evaluated. The calorific value of the bael shell pyrolysis oil was 20.4 MJ/kg, which is slightly higher than the biomass, i.e., 18.24 MJ/kg. The H/C and O/C ratios of the bio-oil were found as 2.3 and 0.56 respectively, which are quite higher than some other bio-oils. Gas Chromatography and Mass Spectroscopy (GC-MS) and Fourier Transform Infra-red (FTIR) analyses showed that the pyrolysis oil of bael shell is mostly composed by phenolic and acidic compounds. The results of the properties of the bael shell pyrolysis oil reveal the potential of the oil as an alternate fuel with the essential upgradation of some properties.

SO$_2$ and NOx Reaction Characteristics of Waste Clam Sorbent in Fixed Bed Reactor

  • Jung, Jong-Hyeon;Shon, Byung-Hyun;Yoo, Kyung-Sun;Kim, Hyun-Gyu;Lee, Gang-Woo;Kim, Young-Sik
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2003년도 Challenges and Achievements in Environmental Health
    • /
    • pp.152-156
    • /
    • 2003
  • Air pollution problems due to the emission of pollutants from the various industrial facilities become serious issues and lots of air pollution control processes have been developed. To remove the SO$_2$ and NOx emitted from the solid waste incinerator and coal fired power plants, we studied the Ca-based sorbent which was prepared by waste clam and limestone. The objectives of this study were to develop a clam-based sorbent for removal of SO$_2$ and NOx, and to investigate the physicochemical properties of the waste clam sorbent. In order to determine acid gas removal capacity of sorbent, the batch study on SO$_2$ and NOx removal was performed with the Ca-based sorbent in the fixed bed reactor. Results of the research revealed that clam-based sorbent can be used as the iron-manufacturing industry and chemical adsorbents for the removal of acid gases because the lime content of the waste calm was more than 53.92%. From physicochemical analysis and gas reaction experiments, it could be concluded that clam is good sorbent for the removal of SO$_2$ and NOx in waste incinerator and flue gas desulfurization processes.

  • PDF

The Utilization of Waste Seashells for $H_{2}S$ Removal

  • Kim, Young-Sik;Suh, Jeong-Min;Jang, Sung-Ho
    • 한국환경보건학회지
    • /
    • 제31권6호
    • /
    • pp.483-488
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_{2}$S was studied in a thermogravimetric analyzer at temperature between 600 and $800^{circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the $H_{2}$S removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy (SEM). Measurements of the reaction of $H_{2}$S with waste seashells show that particles smaller than 0.631 mm can achieve high conversion to CaS. According to TGA and fixed bed reactor results, temperature had influenced on $H_{2}$S removal efficiency. As desulfurization temperature increased, desulfurization efficiency increased. Also, maximum desulfurization efficiency was observed at $800^{circ}C$. Desulfurization was related to calcinations temperature.