• 제목/요약/키워드: fixed orifice

검색결과 32건 처리시간 0.028초

Research on fast cool-down of orifice pulse tube refrigerator by controlling orifice valve opening

  • Kim, Hyo-Bong;Park, Jong-Ho
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권4호
    • /
    • pp.36-40
    • /
    • 2010
  • In this paper, a noble method for rapid cooldown of pulse tube refrigerator (PTR) was proposed and experimentally investigated. An orifice pulse tube refrigerator generates refrigeration effect by expansion PV work at the cold-end, and its amount is affected by the orifice valve opening. There exists the optimum valve opening for maximum cooling capacity and it varies as cold-end temperature. It is verified from simulation results using isothermal model that the optimum valve opening increases as the cold-end temperature increases. In the experiments, a single stage orifice pulse tube refrigerator is fabricated and tested. The fabricated PTR shows 97.5 K of no-load temperature and 10 W at 110 K of cooling capacity with the fixed orifice valve opening. From experiments, the initial cooldown curve with four cases of valve opening control scenario are obtained. And it is experimentally verified that the initial cooldown time can be reduced through the control of orifice valve opening.

정밀 제진대 개발 및 동특성에 관한 실험적 연구 (Development of precision vibration isolation table and study of dynamic characteristics with experiment)

  • 김인수;김종연;한문성;김영중
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.329-334
    • /
    • 2001
  • Recently, the high precision technology can not be developed continuously if we don't have anti vibration technology. Vibration isolation technology using an air spring and laminated robber bearing is widely used because it has excellent vibration isolation characteristics. We developed high precision vibration table with two good element(air spring and LRB) for semiconductor factory. Air Spring is used for isolating the vertical vibration and LRB is used for isolating the horizontal Vibration. As a result, It has D-Class degree in BBR-Criteria. In this paper, we talk about orifice characteristics in the self-damped air spring and design flow of the laminated robber bearing. The orifice characteristics is delicate shade of length and diameter. When we do experimentation to find orifice characteristics, length is fixed and diameter is changed. The orifice diameter is the wider and the air spring stiffness is the softer.

  • PDF

Shape and Orifice Optimization of Airbag Systems for UAV Parachute Landing

  • Alizadeh, Masoud;Sedaghat, Ahmad;Kargar, Ebrahim
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권3호
    • /
    • pp.335-343
    • /
    • 2014
  • An airbag is an important safety system and is well known as a safety system in cars during an accident. Airbag systems are also used as a shock absorber for UAVs to assist with rapid parachute landings. In this paper, the dynamics and gas dynamics of five airbag shapes, cylindrical, semi-cylindrical, cubic, and two truncated pyramids, were modelled and simulated under conditions of impact acceleration lower than $4m/s^2$ to avoid damage to the UAV. First, the responses of the present modelling were compared and validated against airbag test results under the same conditions. Second, for each airbag shape under the same conditions, the responses in terms of pressure, acceleration, and emerging velocity were investigated. Third, the performance of a pressure relief valve is compared with a fixed-area orifice implemented in the air bag. For each airbag shape under the same conditions, the optimum area of the fixed orifice was determined. By examining the response of pressure and acceleration of the airbag, the optimum shape of the airbag and the venting system is suggested.

고응답 비래 유량제어 밸브의 동특성 향상에 관한 연구 (A Study on Dynamic Characteristics Improvement of Fast Response Proportional Flow Control Valve)

  • 김고도;김원수;이현철;윤소남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.1053-1057
    • /
    • 1996
  • The purpose of this study is to bring out the optimal design factors which effect on dynamic characteristics in the design of proportional flow control valve with fast response characteristics, and to verify the validity of the design factors In this study, force feedback type flow control valve with nozzle-flapper is studied. And, the influences which fixed orifice, nozzle diameter, and maximum displacement between nozzle and flapper effect on dynamic characteristics are analyzed. We have done simulations using the optimal design factors and simulink(Matlab) as a simulation tool, and verified the validity of our simulations by means of comparison our simulation results with an experimental results of another similar valve.

  • PDF

전자유압 서보 유량제어밸브의 설계 및 동특성 향상에 관한 연구 (A Study on the Design and the Dynamic Characteristics of Electro-Hydraulic Flow Control Servo Valve)

  • 김고도;김수태
    • 한국정밀공학회지
    • /
    • 제17권2호
    • /
    • pp.151-160
    • /
    • 2000
  • An experimental and theoretical analysis for the improvement of dynamic characteristics and design of electro-hydraulic flow control servo valve are performed. The theoretical results are compared with the experimental step responses, and the important design parameters of an electro-hydraulic flow control servo valve are derived by using the simulation program. Simulation parameters of nozzle jet coefficient and orifice and spool valve discharge coefficient are given through experiment. The theoretical and experimental step response curves show that the valve gain depends on the fixed orifice and nozzle $ratio(R_on)$ and is maximum at $R_on=1.$ And drain orifice in the flapper - nozzle return line creates a small back pressure, which improves the performance fur the valve.

  • PDF

공기보조식 와류 노즐의 저압 분무특성 (Spray Characteristics of Air-assisted Vortex Nozzle at Low Pressure Condition)

  • 김우진;비멀;최장수
    • 한국분무공학회지
    • /
    • 제20권2호
    • /
    • pp.82-87
    • /
    • 2015
  • A nozzle with vortex generator was used to develop the low pressure nozzle with high atomization performance and the nozzle atomized the liquid by centrifugal shear forces. In order to analyze the atomization characteristics, a shadowgraphy method was used and the measurement of droplet size was performed by using laser diffraction analyzer. The liquid injection pressure was fixed as 0.03 bar which is very low pressure and the gas injection pressures were changed from 0 bar to 2.0 bar. As a result, the breakup was achieved at the air injection pressure of 0.25 bar and over. The nozzle with the orifice diameter of 0.4 mm and the orifice gap of 0.25 mm presented small droplet diameters under 50 at the air injection pressure of 0.75 bar.

드레인 오리피스가 없는 유랑제어 서보밸브의 특성에 관한 연구 (A Study on Characteristics of Flow Control Servo Valve with no Drain Orifice)

  • 윤소남;강보식;성백주;김형의
    • 연구논문집
    • /
    • 통권26호
    • /
    • pp.85-94
    • /
    • 1996
  • The purpose of this study is to bring out the optimal design factors which effect on dynamic characteristics in the design of proportional flow control valve with high response characteristics, and to verify the validity of the design factors. In this study, force feedback type flow control valve with nozzle-flapper is studied. And, the influences which fixed orifice, nozzle diameter, and maximum displacement between nozzle and flapper effect on dynamic characteristics are analyzed. We have done simulations using the optimal design factors and simulink(Matlab) as a simulation tool, and verified the validity of our simulations by means of comparison our simulation results with an experimental results of another similar valve.

  • PDF

고정식 진동수주형 파력발전기에 관한 실험적 연구 (A Study for Fixed Type Wave Energy Conversion Device with Oscillating Water Column)

  • 김성근;박노식;박인규
    • 한국해양공학회지
    • /
    • 제10권2호
    • /
    • pp.136-145
    • /
    • 1996
  • The theory is based on two thermodynamic equations for the air mass in the air column and bydrodynamic equation for the relation between the response of the air in the water column and the incident wave. The numerical model is experimented in a two dimensional water tank and the caisson model with sloped front wall is tested in the large towing tank.

  • PDF

리버스 무단 댐퍼용 연속가변밸브의 튜닝 파라미터에 관한 연구 (A Study on the Tuning Parameter of Continuous Variable Valve for Reverse Continuous Damper)

  • 윤영환;최명진;유송민
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.192-200
    • /
    • 2002
  • Semi-active suspension systems are greatly expected to be in the mainstream of future controlled suspensions for passenger cars. In this study, a continuous variable damper for a passenger car suspension is developed, which is controlled actively and exhibits high performance with light weight, low cost, and low energy consumption. To get fast response of the damper, reverse damping mechanism is adapted, and to get small pressure change rate after blow-off, a pilot controlled proportional valve is designed and analyzed. The reverse continuous variable damper is designed as a HS-SH damper that offers good body control with reduced transferred input force from tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping force can be tuned independently, of which variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-off becomes smooth when the fixed orifice size increases, which means that the blow-off slope is controllable using the fixed orifice size. The damping force variance is wide and continuous, and is controlled by the spool opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through real car test.

Soil interaction effects on the performance of compliant liquid column damper for seismic vibration control of short period structures

  • Ghosh, Ratan Kumar;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • 제28권1호
    • /
    • pp.89-105
    • /
    • 2008
  • The paper presents a study on the effects of soil-structure-interaction (SSI) on the performance of the compliant liquid column damper (CLCD) for the seismic vibration control of short period structures. The frequency-domain formulation for the input-output relation of a flexible-base structure with CLCD has been derived. The superstructure has been modeled as a linear, single degreeof-freedom (SDOF) system. The foundation has been considered to be attached to the underlying soil medium through linear springs and viscous dashpots, the properties of which have been represented by complex valued impedance functions. By using a standard equivalent linearization technique, the nonlinear orifice damping of the CLCD has been replaced by equivalent linear viscous damping. A numerical stochastic study has been carried out to study the functioning of the CLCD for varying degrees of SSI. Comparison of the damper performance when it is tuned to the fixed-base structural frequency and when tuned to the flexible-base structural frequency has been made. The effects of SSI on the optimal value of the orifice damping coefficient of the damper has also been studied. A more convenient approach for designing the damper while considering SSI, by using an established model of a replacement oscillator for the structure-soil system has also been presented. Finally, a simulation study, using a recorded accelerogram, has been carried out on the CLCD performance for the flexible-base structure.