• Title/Summary/Keyword: fixation trace

Search Result 6, Processing Time 0.02 seconds

STUDY ON THE VISUAL COGNITIVE CHARACTERISTICS BY THE FIXATION POINT ANALYSIS USING THE EYE MARK RECORDER

  • Yamanoto, Satoshi;Yamaoka, Toshiki;Matsunobe, Takuo
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2001.05a
    • /
    • pp.20-25
    • /
    • 2001
  • In recent years, the concern about a user center design in increasing, and it's needed to task a user's visual cognitive characteristics for information presentation. Then this study aims to grasp user's cognitive characteristics about the information presentation by analyzing the fixation points. In the experiment, actually subject operated a copy machine. Recorded the fixation point movement of the operation panel by the eye mark recorder. Analysis examined the screen interface of the operation panel from the field of a fixation point trace. The top down type fixation oder by experience or the context became clear as a result. Furthermore, the difference of the fixation order by skill level was also examined. In this study, it was assumed that to grasp the visual cognitive characteristics becomes the key of efficient information.

  • PDF

Feasibility of Using Graphite Powder to Enhance Uranium Ion Intensity in Thermal Ionization Mass Spectrometry (TIMS)

  • Park, Jong-Ho
    • Mass Spectrometry Letters
    • /
    • v.7 no.4
    • /
    • pp.102-105
    • /
    • 2016
  • This study explored the feasibility of using a carburization technique to enhance the ion intensity of isotopic analysis of ultra-trace levels of uranium using thermal ionization mass spectrometry (TIMS). Prior to fixing uranium samples on TIMS filaments, graphite powder suspended in nitric acid was deposited on rhenium filaments. We observed an enhancement of $^{238}U^+$ intensity by a factor of two when carburization was used, and were able to roughly optimize the amount of graphite powder necessary for carburization. The positive shift in heating current when evaporating filaments upon carburization implies that uranium was chemically altered by carburization, when compared to normal fixation processes. The good agreement between our method and known standards down to an ultra-trace level shows that the proposed technique can be applied to isotopic uranium analysis down to abundances of ~10 pg.

Radioopacity of Absorbable Plate containing Hydroxyapatite and Gold(Au); A Preliminary Report (Hydroxyapatite와 금(Au)이 혼합된 흡수성 고정판의 방사선비투과성; 예비 실험)

  • Kim, Yong Ha;Nam, Hyun Jae;Lee, Joon Ho;Kim, Kap Joong;Kim, Yeon Jung;Choi, Sik Young
    • Archives of Plastic Surgery
    • /
    • v.35 no.4
    • /
    • pp.419-422
    • /
    • 2008
  • Purpose: Absorbable bone fixation materials for operation of facial bone fracture are composed of poly- lactic acid(PLA) & poly-glycolic acid(PGA). These materials are absorbed after facial bone healing period. Therefore, these materials are harmless in human body. But because of it's radioopacity, the number and the location of the materials are not checked in follow-up X-ray examination. We studied absorbable bone fixation materials checked radiological examination. So, we made the absorbable plate composed of PLA, Hydroxyapatite (HA) and Gold(Au). Methods: Plate 1 was consisted of pure PLA. Plate 2 was consisted of PLA(50%) and HA(50%). Plate 3 - 7 were consisted of PLA(50%), and variable composition of HA & Au. The ratio of Au was as following. From the plate 3 to plate 7, the Au ratio was 1%, 5%, 10%, 17%, and 25%, respectively. Total 3 examinations were used-naked eye examination, simple X-ray examination, and Haunsfield unit of plate in CT examination. Results: Naked eye examination found out that the color of plate 1 was most white. As the Au ratio increases, the color of plate was getting close to khaki color. the radioopacity of plate 2 was similar cortical bone of face in simple X-ray. The Haunsfield unit of cortical bone of face was 1000 HU. Haunsfield unit of titanium plate was 2900 HU. Haunsfield unit of plate 1 through plate 7 were -242, 1489, 1776, 3052, 3092, 3095, and 3095, respectively. Conclusion: Radioopacity of plate 2 was similar to cortical bone of face. In CT examination, Hanusfield unit of plate 2 was similar to Hanusfield unit of cortical bone of face. Hanusfield unit of plate 4 - 7 were similar to Hanusfield unit of titanium plate. So to trace bone fixation materials after facial bone surgery, the best ratio of Au is about 1 - 5%. If this study is applied to facial bone surgery, radiologic follow up would be easy after facial bone surgery.

Practical significance of plant growth-promoting rhizobacteria in sustainable agriculture: a review

  • Subhashini Wijeysingha;Buddhi C. Walpola;Yun-Gu Kang;Min-Ho Yoon;Taek-Keun Oh
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.759-771
    • /
    • 2023
  • Plant growth-promoting rhizobacteria (PGPR) are naturally occurring bacteria that intensively colonize plant roots and are crucial in promoting the crop growth. These beneficial microorganisms have garnered considerable attention as potential bio-inoculants for sustainable agriculture. PGPR directly interacts with plants by providing essential nutrients through nitrogen fixation and phosphate solubilization and accelerating the accessibility of other trace elements such as Cu, Zn, and Fe. Additionally, they produce plant growth-promoting phytohormones, such as indole acetic acids (IAA), indole butyric acids (IBA), gibberellins, and cytokinins.PGPR interacts with plants indirectly by protecting them from diseases and infections by producing antibiotics, siderophores, hydrogen cyanide, and fungal cell wall-degrading enzymes such as glucanases, chitinases, and proteases. Furthermore, PGPR protects plants against abiotic stresses such as drought and salinity by producing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and modulating plant stress markers. Bacteria belonging to genera such as Bacillus, Pseudomonas, Burkholderia, Pantoa, and Enterobacter exhibit multiple plant growth-promoting traits, that can enhance plant growth directly, indirectly, or through synergetic effects. This comprehensive review emphasizes how PGPR influences plant growth promotion and presents promising prospects for its application in sustainable agriculture.

Growth Promotion of Pepper Plants by Pantoea ananatis B1-9 and its Efficient Endophytic Colonization Capacity in Plant Tissues

  • Kim, Su-Nam;Cho, Won-Kyong;Kim, Won-Il;Jee, Hyeong-Jin;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.270-281
    • /
    • 2012
  • The bacteria B1-9 that was isolated from the rhizosphere of the green onion could promote growth of pepper, cucumber, tomato, and melon plants. In particular, pepper yield after B1-9 treatment on the seedling was increased about 3 times higher than that of control plants in a field experiment. Partial 16S rDNA sequences revealed that B1-9 belongs to the genus Pantoea ananatis. Pathogenecity tests showed non-pathogenic on kimchi cabbage, carrot, and onion. The functional characterization study demonstrated B1-9's ability to function in phosphate solubilization, sulfur oxidation, nitrogen fixation, and indole-3-acetic acid production. To trace colonization patterns of B1-9 in pepper plant tissues, we used $DRAQ5^{TM}$ fluorescent dye, which stains the DNAs of bacteria and plant cells. A large number of B1-9 cells were found on the surfaces of roots and stems as well as in guard cells. Furthermore, several colonized B1-9 cells resided in inner cortical plant cells. Treatment of rhizosphere regions with strain B1-9 can result in efficient colonization of plants and promote plant growth from the seedling to mature plant stage. In summary, strain B1-9 can be successfully applied in the pepper plantation because of its high colonization capacity in plant tissues, as well as properties that promote efficient plant growth.

Autometallography for Zinc Detection in the Central Nervous System (중추신경계통내 분포하는 Zinc의 조직화학적 동정)

  • Jo, Seung-Mook;Gorm, Danscher;Kim, Sung-Jun;Park, Seung-Kook;Kang, Tae-Cheon;Won, Moo-Ho
    • Applied Microscopy
    • /
    • v.30 no.4
    • /
    • pp.347-355
    • /
    • 2000
  • Zinc is one of the most abundant oligoelements in the living cell. It appears tightly bound to some metalloproteins and nucleic acids, loosely bound to some metallothioneins or even as free ion. Small amounts of zinc ions (in the nanomolar range) regulate a plentitude of enzymatic proteins, receptors and transcription factors, thus rolls need accurate homeostasis of zinc ions. Zinc is an essential catalytic or structural element of many proteins, and a signaling messenger that is released by neural activity at many central excitatory synapses. Growing evidences suggest that zinc may also be a key mediator and modulator of the neuronal death associated with transient global ischemia and sustained seizures, as well as perhaps other neurological disease stoles. Some neurons have developed mechanisms to accumulate zinc in specific membrane compartment ('vesicular zinc') which can be evidenced using histochemical techniques. Substances giving a bright colour or emitting fluorescence when in contact with divalent metal ions are currently used to detect them inside cells; their use leads to the so called 'direct' methods. The fixation and precipitation of metal ions as insoluble salt precipitates, their maintenance along the histological process and, finally, their demonstration after autometallographic development are essential steps for other methods, the so called 'indirect methods'. This study is a short report on the autometallograhical approaches for zinc detection in the central nervous system (CNS) by means of a modified selenium method.

  • PDF