Browse > Article
http://dx.doi.org/10.5478/MSL.2016.7.4.102

Feasibility of Using Graphite Powder to Enhance Uranium Ion Intensity in Thermal Ionization Mass Spectrometry (TIMS)  

Park, Jong-Ho (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Publication Information
Mass Spectrometry Letters / v.7, no.4, 2016 , pp. 102-105 More about this Journal
Abstract
This study explored the feasibility of using a carburization technique to enhance the ion intensity of isotopic analysis of ultra-trace levels of uranium using thermal ionization mass spectrometry (TIMS). Prior to fixing uranium samples on TIMS filaments, graphite powder suspended in nitric acid was deposited on rhenium filaments. We observed an enhancement of $^{238}U^+$ intensity by a factor of two when carburization was used, and were able to roughly optimize the amount of graphite powder necessary for carburization. The positive shift in heating current when evaporating filaments upon carburization implies that uranium was chemically altered by carburization, when compared to normal fixation processes. The good agreement between our method and known standards down to an ultra-trace level shows that the proposed technique can be applied to isotopic uranium analysis down to abundances of ~10 pg.
Keywords
carburization; thermal ionization mass spectrometry (TIMS); uranium; nuclear safeguards;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Donohue, D. L. J. Alloy Compd. 1998, 271-273, 11.   DOI
2 Donohue, D. L.; Ciurapinski, A.; Cliff III, J.; Rudenauer, F.; Kuno, T.; Poths, J. Appl. Surf. Sci. 2008, 255, 2561.   DOI
3 Magara, M.; Hanzawa, Y.; Esaka, F.; Miyamoto, Y.; Yasuda, K.; Watanabe, K.; Usuda, S.; Nishimura, H.; Adachi, T. Appl. Radiat. Isotopes 2000, 53, 87.   DOI
4 Jakubowski, N.; Prohaska, T.; Rottmann, L.; Vanhaecke F. J. Anal. At. Spectrom. 2011, 26, 693.   DOI
5 Esaka, F.; Magara, M.; Lee, C. G.; Sakurai, S.; Usuda, S.; Shinohara, N. Talanta, 2009, 78, 290.   DOI
6 Esaka, F.; Magara, M.; Suzuki, D.; Miyamoto, Y.; Lee, C.; Kimura, T. Mass Spectrom. Letters, 2011, 2, 80-83.   DOI
7 Ranebo, Y.; Hedberg, P.M.L.; Whitehouse, M.J.; Ingeneri, K.; Littmann, S. J. Anal. At.. Spectrom. 2009, 24, 277.   DOI
8 Heumann, K. G.; Eisenhut, S.; Gallus, S.; Hebeda, E. H.; Nusko, R.; Vengosh, A.; Walczyk, T. Analyst 1995, 120, 1291.   DOI
9 Stetzer, O.; Betti, M.; Geel, J.; Erdmann, N.; Kratz, J. -V.; Schenkel, R.; Trautmann, N. Nucl. Instr. Meth. Phys. Res. A 2004, 525, 582.   DOI
10 Lee, C.-G..; Iguchi, K.; Esaka, F.; Magara, M.; Sakurai, S.; Watanabe, K.; Usuda, S. Jpn. J. Appl. Phys. 2006, 45, 294-296.   DOI
11 Kraiem, M.; Mayer, K.; Gouder, T.; Seibert, A.; Wiss, T.; Thiele, H.; Hiernaut, J. Int. J. Mass Spectrom. 2010, 289, 108.   DOI
12 Gaines, G.; Sims, C.; Jaffe, R.; J. Electrochem. Soc. 1959, 106, 881.   DOI
13 Jakopic, R.; Richter, S.; Kuhn, H.; Benedik, L.; Pihlar, B.; Aregbe, Y. Int. J. Mass Spectrom. 2009, 279, 87.   DOI
14 Park, J.-H.; Choi, I.; Song, K. Mass Spectrom. Lett. 2010, 1, 17.   DOI
15 Suzuki, D.; Saito-Kokubu, Y.; Sakurai, S.; Lee, C.-G.; Magara, M.; Iguchi, K.; Kimura, T. Int. J. Mass Spectrom. 2010, 294, 23.   DOI
16 Park. J.-H.; Jeong, K. Mass Spectrom. Lett. 2016, 7, 64.   DOI
17 Park, J.-H..; Choi, I.; Park, S.; Lee, M.; Song, K. Bull. Korean Chem. Soc. 2012, 32, 4327.
18 Park, J.-H. .; Jeong, K.; Song, K. Asian J. Chem. 2013, 25, 7061.
19 Park. J.-H.; Choi, E.-J. Talanta 2016, 160, 600.   DOI
20 Pallmer Jr., P.; Gordon, R.; Dresser, M. J. Appl. Phys. 1980, 51, 3776.   DOI