• Title/Summary/Keyword: fishing ground

Search Result 317, Processing Time 0.021 seconds

Oceanic Characteristics of Fishing Ground for Yellowfin and Bigeye Tunas Caught by Korean Tuna Longline Fishery in the Tropical Pacific (열대 태평양 연승어업 대상 황다랑어와 눈다랑어 어장 분포의 해황 특성)

  • YANG Won Seok;CHO Kyu Dae;MOON Dae Yeon;KOH Jeong Rack
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.3
    • /
    • pp.196-204
    • /
    • 2005
  • The horizontal and vertical distribution of yellowfin tuna, Thunnus albacares (Bonnaterre) and bigeye tuna, Tunnus obesus (Lowe) in relation to oceanic conditions such as thermal structure produced during El Nino/La Nina episodes were analyzed on the basis of data sets for the catches and efforts from the Korean tuna longline fishery and for the oceanographic observations from the NOAA during 1982-2002 in the tropical Pacific. The high density of fishing ground appeared in the western Pacific ($5^{\circ}N-5^{\circ}S,\;160^{\circ}E-180^{\circ}W$) for yellowfin tuna and in the eastern Pacific ($5^{\circ}N-15^{\circ}S,\;130^{\circ}W-100^{\circ}W$) for bigeye tuna. yellowfin and bigeye tunas were mainly distributed at the 110-250 m layer and 245-312 m layer, respectively, in the western Pacific. However, in the eastern Pacific, they were mostly caught at the 116-161 m and 205-276 m layer for yellowfin tuna and bigeye tuna, respectively. It can be suggested that bigeye tuna be distributed in the deepest layer among tunas and show a vertical size stratification. It was observed that during the El Nino events the main fishing ground of yellowfin tuna shifted from the western Pacific toward the eastern Pacific. In the eastern Pacific which showed a higher density of bigeye tuna, the vulnerability of bigeye tuna caught by deep longline increased during the El Nino events due to deepening of thermocline layer and a more intensively distribution of the fish schools in the lower layer of thermocline during the El Nino events.

Improvement of fishing efficiency of Danish seine to ratio of buoyancy by sinking force (부력조정에 의한 외끌이기선저인망의 어획성능 개선)

  • Lee, Hye-Ok;Lee, Ju-Hee;Kwon, Byeong-Guk;Kim, Bu-Yeong;Kim, Byung-Soo;Yoo, Je-Bum
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.2
    • /
    • pp.87-100
    • /
    • 2007
  • This study was carried out to offer fundamental data for improving the fishing efficiency of the Danish seine. The net height and the shape in the water was measured to analyze the efficiency of the existing Danish seine. And then, an improved fishing gear was developed based on the results and was tested in the field. Measuring devices were attached on center of a ground rope and a head rope. The net height is the spread distance between the ground rope and the head rope, which was measured on the different ratio of buoyancy. The results are obtained as follows. The net height estimated from the design plan of horizontal hanging ratio 0.40 in the existing Danish seine A and B estimated both 4.94m. The net height of the existing Danish seine A and B was respectively 1.8m and 2.3m, which form 36.4% and 46.2% of the net height estimated from the design plan. Buoyancy was changed as 79.5% and 96.2% relative to the sinking force in the existing Danish seine. The net height of 79.5% was 3.95m which increased to 80% of the estimated net height. The other shows the same result with the first case. It is not necessarily that the high buoyancy/sinking force ratio make the high net height, 80% is adequate as the buoyancy/sinking force ratio. In case of the improved Danish seine, the mean net height was about 5.0m, means 58.3% of estimated net height 8.58m.

Changes in the Ecological Characteristics of Todarodes pacificus associated with Long-term Catch Variations in Jigging Fishery (채낚기어업에서의 살오징어(Todarodes pacificus) 장기 어획변동과 생태학적 특성 변화)

  • Jo, Min Jin;Kim, Jung Jin;Yang, Jae Hyeong;Kim, Chang Sin;Kang, Su Kyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.6
    • /
    • pp.685-695
    • /
    • 2019
  • To assess the state of Todarodes pacificus fisheries, we examined changes in major fishing and ecological characteristics by comparing jigging fishery data between high (HCLP, 1996-2000) and low (LCLP, 2013-2017) catch level periods. The peak catch occurred in October during the HCLP compared with December during the LCLP. The average catch per unit effort was higher during the HCLP (1.3 tons/jigging vessel) than LCLP (1.0 ton/jigging vessel). During the HCLP, fishing grounds were highly concentrated in the southwestern East Sea and Yamato bank, whereas during the LCLP, the distribution of grounds extended to the South Sea, West Sea, and northern East Sea (near Russian waters) at a low density. Water temperatures in the main fishing ground in the southwestern East Sea were higher at 0, 50, and 100 m depths during the LCLP than HCLP. Meanwhile, the average mantle length of catches decreased from 23.5 cm during the HCLP to 22.21 cm during the LCLP. The mantle length at 50% maturity also decreased between the two periods from 22.06 (HCLP) to 18.77 cm (LCLP). These findings will help guide future management strategies for T. pacificus.

Relationship between Fishing Condition of Common Squid and Oceanic Condition in the East Sea (동해에서의 오징어 어황과 해황과의 관계)

  • Cho Kyu-Dae;Kim Sang-Woo;Kang Gi-Hong;Lee Chung-Il;Kim Dong-Sun;Choi Yun-Sun;Choi Kwang-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.1 s.20
    • /
    • pp.61-67
    • /
    • 2004
  • This study described relationships between fluctuation of fishing conditions for common squid and oceanic conditions in the East Sea from 1990 to 1999. Annual catches of common squid have been higher since the late 1980s compared to the period of the late 1970s to the mid-1980s. These catches fluctuations might be related to the effect of regime shifts. Monthly catches of common squid appear the timing of a large catch from September to December and a poor catch from March to May. The monthly catches are also the highest in October and are the lowest in April. Annual stable fishing grounds for coefficient of variation below 1.0 are formed in waters around Guryongpo and Ullung Island Based on optimum water temperature for catch, $16^{\circ}C$, optimum water depth for catch shallow going north. It indicates that the optimum water depth of fishing work different of each area Fishing ground formation and horizontal water temperature appear the minimum $10{\sim}14^{\circ}C$ in April, the maximum $10{\sim}20^{\circ}C$ in October. If seem, that seasonal fluctuation of fishing ground is related to the extension of the Tsushima warm current in the East Sea.

  • PDF

Distribution and Spawning of the Yellow Goosefish , Lophius litulon (황아귀 Lophius litulon 의 분포와 산란)

  • 차병열
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.2
    • /
    • pp.97-108
    • /
    • 1997
  • Variation of the catches and fishing grounds, and spawning ecology of Lophius litulon caught by large staw net were investigated from following as ; L. litulon caught through the year, and the peak in catches showed on January in winter, and the lowest catches showed on August in summer. The fishing grounds of L. litulon were located in the Yellow Sea and the East China Sea. And the main fishing ground was formed in the adjacent waters of Ilhyang-cho, where catches and CPUE were more than 50 M/T, 5 kg/haul, respectively, and the range of coefficient of variation(C.V) was 0.6~0.7. The spawning season of L. litulon was on March and April, when spawning area was formed in waters between Ilhyang-Cho and Cheju-Do. The fishing grounds distribution of L. litulon was obviously different with seasonal variation. Namely, in winter, the fishing grounds were mainly formed in the western waters of Cheju-Do, and on March and April( in spawning season), the fishing grounds were densely formed in the adjacent waters of Ilhyang-Cho, and after May, the fishing grounds were widely dispersed towards in the Yellow Sea and the East China Sea with temperature upgrade.

  • PDF

Trend of Reduction and Direction of Management Response in the Large Purse Seine Fishery (대형선망어업의 축소 동향과 경영대응 방향)

  • Kim, Dae-Young
    • The Journal of Fisheries Business Administration
    • /
    • v.50 no.4
    • /
    • pp.29-44
    • /
    • 2019
  • This paper examines the trend of restructuring and direction of management response in the Large Purse Seine Fishery. The large-scale fishing industry is one of the most popular fishing areas in the coastal area, and it has been developed by providing exclusive supplies of many types of catchy fish, such as mackerel and horse mackerel through physical productivity in fleet operations. However, the Large Purse Seine Fishery has been declining in profitability due to the deterioration of the business environment since 2000. It is at a crossroads whether it will disappear or regenerate as it is. The Large Purse Seine Fishery's current problems are: firstly, the continued deterioration of the fishery business balance and worsening labor problems, secondly, insufficient freshness management and quality control after landing, and thirdly, import competition. The fourth is the intensification of the market competition, which is the evolution of fishing variability and the increase in the proportion of small fish. The fifth is the reduction of the operating fishing ground due to the suspension of mutual fishing in Korea and Japan. To address these problems and suggest management response directions for the survival of large-scale fishing businesses is as follows. First, a sustainable production system should be established through strengthening resource management and promoting international fisheries cooperation. Second, the profitability of fishing management should be improved by introducing a low-cost supplier system and securing a stable labor force. Third, we should improve the leading and quality control of catch, improve the high value-added value of catch through brand development, and secure competitive advantage with imported produce. Finally, the government should establish a cooperative system among private sector, government, and research institutes to push ahead with these tasks and strengthen the competitiveness of the front and rear industries.

Fishing performance of hull form renovated tuna purse seiner (선형개조 다랑어 선망선의 조업성능)

  • HONG, Jin-Keun;KANG, Il-Kwon;JEONG, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.3
    • /
    • pp.321-332
    • /
    • 2015
  • In an attempt to find the improvement of the fishing efficiency according to the hull form remodeling for the 3 tuna purse seiner, the Catch-Per-Unit-Effort (CPUE) for that undertaken before (2008) and after (2010) was analyzed. In addition, the CPUE of 6 similar ships operated same period and same fishing ground. As result, it came to verify that the three modified ships had a significant value on the CPUE. An another index for the improvement of fishing efficiency is the rate of reduction of fuel oil consumption for the modified ships. Fuel oil consumption per day in service speed as comparing with the original ships were reduced 2.1%, 4.0% and 5.1% on the modified ship A, B, and C respectively. And each ship's service speed was increased 1.0 kt, 0.6 kt, and 0.4 kt according to the modified ship A, B, and C in due order. In the conclusion, the remodeling job with newly equipped bulbous bow, lengthened slipway and enlarged rudder area were improved fairly much on fuel oil efficiency, the ship's speed, and in the end, that led to the improving fishing efficiency. Hence, the remodeling of tuna purse seiner come to improve not only the fishing performance, but contribute to the reduction of operating cost by saving energy for the fisheries industry.

The Underwater Noise of Fishing Gears in Operation (망어구의 수중소음에 관한 연구)

  • 윤갑동
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 1980
  • An underwater recording system was designed to measure the sound spectra of the underwater noises produced by fishing gears in operation. Recorded were noi~es from three types of fishing gears: an anchovy set net, three anchovy boat seine net and a stern trawlnet. Acoustic analysis were made using a heterodyne analyzer, a digital frequency analyzer and a level recorder. The no;'e produced by the anchovy set net was found in the high frequency region of the onset of ambient noise spectrum with a slope of - 6 dB/octave. Here the ambient noise spectrum is higher, though similar in shape, than Knudsen spectrum, and is attributed to the breaking action of the coastal wave. Measured noise spectra during the fishing operations of the anchovy boat seine nets are attributed to the background noise of the sea in the presence of the fishing vessels. The frequency distribution of the noise was 20~5, 000 Hz in the case of two steel anchovy boat seiners, and 20-3,000 Hz in the case of the wooden anchovy boat seiner. The predominant frequency range was 250~350 Hz and maximum sound pressure level was 122 dB (re $1\muPa$) in the case of the steel boat and ] 17 dB in the case of the wooden boat. The noises produced by the trawl fishing gears are remarkably higher than the background noi~e in the presence of the fishing vessel. The frequency distribution of the noi~e was 20-6,300 Hz. The predominant frequency range was 100~200 Hz and maximum sound pressure level was 137 dB ( re $1\muPa$) . The noise spectra were not so much different from that caused by vibrations of the towing cable and the structure of the ground rope of the trawl net towed in an experimental tank.

  • PDF

Power Save of Marine Tracker Buoy System Based on NB-IoT for Identification of Fishing Gear (어구 자동 식별을 위한 NB-IoT 기반의 해양 트래커 부이 시스템의 전력 절감)

  • Nam, Sung-Il;Kim, Min-Hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.545-550
    • /
    • 2018
  • Ministry of Oceans and Fisheries declared action plan for the electric fishing gear using real name in order to prevent overusing the fishing gear and to reduce discarded fishing gear. It is needed for a technique that can efficiently transmit the information including the type and location of the fishing gear and the user's real name to the fishing boat and the control center using IoT-based communication. The marine tracker buoy system, which is placed on the water for a long time, transmit the position data and the state data of the buoys to the control center in the ground by using NB-IoT channels. In this paper, we propose the algorithm for the low-power operation of the marine tracker buoy system is proposed and test results of current consumption in the marine tracker buoy system with the proposed algorithm is investigated.

Studies on the Development of the Fishing System of Set Net in the Coast of Jeju Island - II. Comparative of Fishing Efficiency of Rectangular Set Net and Pound Net in Fishing Ground - (제주도 연안 정치망 조업시스템 개발에 관한 연구 -II. 조업어장에서의 각망과 낙망의 어획성능 비교-)

  • 김종범;김석종;김병엽
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.3
    • /
    • pp.232-239
    • /
    • 2001
  • For the purpose of providing the basic data on the improved fishing gear and the man power saving, which contribute to enhance fishing efficiency of set net in the coast of Jeju Island, this study analyzed the catch of two fishing place for the past 3 years in order to compare the fishing efficiency between rectngular set net and pound net, which have been used for fishing with being attached to the set net fishing place in coast of Jeiu Island, Thereby the result is as follows ; 1. When using pound net, the total amount of catch during 1997 to 1999 was 2 times more than that of when using rectangular set net. 2. When using Pound net, the catch of squid, mackerel, rabbit fish and Yellow tail during 1997 to 1999 was 1.8 times more than that of when using rectangular set net.. 3. In case of rectangular set net, CPUE marked 10.1㎏ with horse amckerel, 20.5㎏ with squid, 18.0㎏ with rabbit fish and 2.2㎏ with Yellow tail, and in case of pound net, CPUE marked 57.5 ㎏ with horse mackerel, 30.0㎏ with squid, 25.0 with rabbit fish and 4.7㎏ with yellow tail, and on the whole CPUE of poind net marked higher. 4. In case of rectangular set net, the catch ratio for fishing operation marked 64% with horse mackerel, 79% with squid, 39% with rabbit fish and 14% with yellow tail, and in case of pound net, the catch ratio fishing operation marked 18% with horse mackerel, 85% with souid 40% with rabbit fish and 14% with yellow tail, and accordingly it showed the result that the catch ratio for fishing operation was higher with the case of rectangular set net, but higher with the case of pound net.

  • PDF