• Title/Summary/Keyword: fishing

Search Result 3,265, Processing Time 0.037 seconds

Passing Down Traditional Fishing Methods Using Fish Weirs and the Production of Better Bamboo Weir Anchovies: Focusing on Structural Changes to Bamboo Weirs and Fishing Methods on the Southern Coast (전통어로방식-어살의 전승과 더 좋은 죽방렴 멸치의 생산: 남해안 죽방렴의 구조 변화와 어업방식을 중심으로)

  • JEON, Kyoungho
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.3
    • /
    • pp.132-150
    • /
    • 2022
  • Designated as a national intangible cultural asset, the fish weir is a traditional fishing method and was a leading fishing tool in Korean coastal fishery. As the littoral sea area fishing vessel fishery developed since the 1970s, traditional fishing methods including fish weirs began to decline. The fish weir has been passed down in the form of tools such as fish weirs, stone weirs, and bamboo weirs. In Namhae-gun and Sacheon City in Gyeongsangnam-do, anchovies are caught using bamboo weirs. A basic bamboo weir consists of a fish trap(balgong), a space where fish gather together, and a V- or U-shaped wooden fence(halgaji) that helps fish come inside the fish trap. Its fishing method is to catch fish that have come to the coast during high tide alongside those are stuck inside fish traps(balgong) with nets or scoop nets. This paper examined the process of passing down traditional fishing methods through a comparative analysis of the bamboo weir structures and fishing methods in the Namhae and Sacheon regions. First, the historical process of assembling the current bamboo weir structure was analyzed. The bamboo weir, a fishing tool, appears to have combined the features of past weirs and fish weirs based on the Jijok Strait and Samcheonpo Strait. Next, this paper examined the structure and fishing method of the two types of bamboo weirs made with a circular or square fish trap(balgong) where fish gather. Through this analysis, this study examined the lives of fishermen who have adapted to their natural environment and actively utilized obtainable resources(materials), and then changed the traditional fishing method of bamboo weirs and developed them into an appropriate technology. Lastly, a new value attributed to anchovies caught using bamboo weirs was analyzed. This new value extracted from better bamboo weir anchovies works as a mechanism to uphold the tradition of anchovy-catching bamboo-weir fishing, which produces a smaller amount of anchovies compared to other methods of anchovy fishing. In this way, bamboo weir fishing has been passed down as a result of its differentiated aspect of producing better anchovies than those produced with other fishing methods, as well as the historical aspect of it being a traditional fishing method.

Estimating Optimal Harvesting Production of Yellow Croaker Caught by Multiple Fisheries Using Hamiltonian Method (해밀토니안기법을 이용한 복수어업의 참조기 최적어획량 추정)

  • Nam, Jong-Oh;Sim, Seong-Hyun;Kwon, Oh-Min
    • The Journal of Fisheries Business Administration
    • /
    • v.46 no.2
    • /
    • pp.59-74
    • /
    • 2015
  • This study aims to estimate optimal harvesting production, fishing efforts, and stock levels of yellow croaker caught by the offshore Stow Net and the offshore Gill Net fisheries using the current value Hamiltonian method and the surplus production model. As analyzing processes, firstly, this study uses the Gavaris general linear model to estimate standardized fishing efforts of yellow croaker caught by the above multiple fisheries. Secondly, this study applies the Clarke Yoshimoto Pooley(CY&P) model among the various exponential growth models to estimate intrinsic growth rate(r), environmental carrying capacity(K), and catchability coefficient(q) of yellow croaker which inhabits in offshore area of Korea. Thirdly, the study determines optimal harvesting production, fishing efforts, and stock levels of yellow croaker using the current value Hamiltonian method which is including average landing price of yellow croaker, average unit cost of fishing efforts, and social discount rate based on standard of the Korean Development Institute. Finally, this study tries sensitivity analysis to understand changes in optimal harvesting production, fishing efforts, and stock levels of yellow croaker caused by changes in economic and biological parameters. As results drawn by the current value Hamiltonian model, the optimal harvesting production, fishing efforts, and stock levels of yellow croaker caught by the multiple fisheries were estimated as 19,173 ton, 101,644 horse power, and 146,144 ton respectively. In addition, as results of sensitivity analysis, firstly, if the social discount rate and the average landing price of yellow croaker continuously increase, the optimal harvesting production of yellow croaker increases at decreasing rate and then finally slightly decreases due to decreases in stock levels of yellow croaker. Secondly, if the average unit cost of fishing efforts continuously increases, the optimal fishing efforts of the multiple fisheries decreases, but the optimal stock level of yellow croaker increases. The optimal harvest starts climbing and then continuously decreases due to increases in the average unit cost. Thirdly, when the intrinsic growth rate of yellow croaker increases, the optimal harvest, fishing efforts, and stock level all continuously increase. In conclusion, this study suggests that the optimal harvesting production and fishing efforts were much less than actual harvesting production(35,279 ton) and estimated standardized fishing efforts(175,512 horse power) in 2013. This result implies that yellow croaker has been overfished due to excessive fishing efforts. Efficient management and conservative policy on stock of yellow croaker need to be urgently implemented.

Catching efficiency of LED fishing lamp and behavioral reaction of common squid Todarodes pacificus to the shadow section of color LED light (LED 색광의 음영구역에 대한 살오징어의 행동반응 및 LED 집어등의 어획성능)

  • An, Young-Il;Jeong, Hak-Geun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.3
    • /
    • pp.183-193
    • /
    • 2011
  • This study made a comparative analysis of behavioral reaction of squid to red (624nm), green (524nm), blue (460nm) & white LED light, its arrival time for the shadow section by making the shadow section in the central section of a water tank just like the bottom part of a squid jigging vessel, and on-site catching efficiency of LED fishing lamp with control fishing vessel. The color LED light showing the highest squidgathering rate as against the shadow section was found to be blue LED light with 39.3% rate under the dark (0.05lx) condition. Under the brighter condition than 0.05lx, white LED light was found to have the highest gathering rate of 41.5%. In addition, it was found that squid gathering rate was high at the shadow section which showed 6.3-fold brightness difference between the shadow section and bright section. As for the arrival time for the shadow section, blue LED light was found to be the fastest in attracting squids in 192.7 seconds under the dark condition while the red LED light was the fastest in luring squids in 164.6 seconds under the bright condition. The ratio of the squid-jigging operation and sailing in fuel consumption of the fishing vessel loaded with LED fishing lamp is about 7 to 1, showing most of the fuel is consumed more in sailing than in squid-jigging operation. As for a catch of squid, the control vessel loaded with MH (Metal Halide) fishing lamp had more catch of 600-7,080 squids than the vessel loaded with LED fishing lamp having a catch of 260-1,700 squids. In addition, even in the comparison of a catch per automatic jigging machine, the catch of the vessel loaded with MH fishing lamp excelled that of the vessel loaded with LED fishing lamp in 6 operations of squid jigging out of 9 operations. The ratio of hand-jigging and automatic jigging machine (one line) in the LED fishing lamp vessel was 1:1.1 excepting the case of having a catch only using an automatic jigging machine, showing almost the same with each other in catches, while in case of a MH fishing lamp vessel, its ratio against hand-jigging was 1 to 5.8, showing hand-jigging excelled in catches.

A Study on the Introduction of Linear Programming Model into the Management of Korean Coastal and Offshore Fisheries (한국 연근해어업의 합리적 관리를 위한 LP모형의 도입방안에 관한 연구)

  • 박장일
    • The Journal of Fisheries Business Administration
    • /
    • v.25 no.1
    • /
    • pp.37-59
    • /
    • 1994
  • Many studies to cope with the present problems of Korean coastal and offshore fisheries has been performed, but these were done partly in necessities and general studies for Korean inshore and offshore fisheries are in early stage. Most of these studies adopted analytical way of approach for each fishery individually and they could not reflect the effect of correlated interaction among fisheries on the several common species/stocks, and thus optimal effort allocation was impossible. To consider general fisheries and optimal effort allocation among competing mixed species, a linear programming (LP) approach is applied in this study and introduced into 16 important inshore and offshore fisheries with 13 constraining species which were chosen by annual yield order. This study is not based on the biological interaction among species (i.e., prey - predator system) but the technological interaction between species and fishing efforts. For the application of LP model in these fisheries, the standardization of fishing efforts through different fishing gears could not be successful and a new way of effort standardization through CPUE for vessel tonnage was originated. Total standardized fishing effort on a particular species i, Ei, is computed as the linear summation of standardized fishing effort generated by each fishery j. That is, (equation omitted) where $f_{j}$ is the total vessel tonnage of fishery j and aij is the coefficients contributing to the standardized fishing effort per ton for species i taken in fishery j. The total fishing effort level on species i due to both directed fishing and by - catch can thus be accounted in the aij's. Optimal effort allocation among the j fisheries may be considered a minimizing problem (minimize $\Sigma$ $f_{j}$), subject to the constraints that standardized fishing effort levels on particular species are maintained at, above, and below certain predefined levels. Fishing effort goals for individual species can be based on various biological and/or economic criteria, i.e., fishing effort level generating maximum sustainable yield and/or maximum economic yield. But in this study the $F_{0.1}$ criteria which was accepted as an approximate level for $F_{mey}$ by Outland and Boerema's (1973) study. The findings of this study are, (1) LP model can be applied to the Korean inshore and offshore fisheries giobally. (2) Through a new way of combining multiple different fisheries' efforts for a particular species together generating standardized fishing effort, Schaefer curve could be applied to the complex system successfully. (3) The results of this study for total reduction scale were mostly the same as those of prior studies, but different much from the individual scales of reduction. This study showed the necessities for exploitation of more concrete parameters to put into consideration of profitability of fisheries and social factors, and this model can be modified according to the actual constraints. Also, considering the age structure of stocks, this model can be developed into better one for better fisheries management.ent.

  • PDF

A Study on the Analysis of Marine Accidents on Fishing Ships Using Accident Cause Data (사고 데이터의 주요 원인을 이용한 어선 해양사고 분석에 관한 연구)

  • Sang-A Park;Deuk-Jin Park
    • Journal of Navigation and Port Research
    • /
    • v.47 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Many studies have analyzed marine accidents, and since marine accident information is updated every year, it is necessary to periodically analyze and identify the causes. The purpose of this study was to prevent accidents by identifying and analyzing the causes of marine accidents using previous and new data. In marine accident data, 1,921 decisions by the Korea Maritime Safety Tribunal on marine accidents on fishing ships over 16 years were collected in consideration of the specificity of fishing ships, and 1,917 cases of accident notification text history by the Ministry of Maritime Affairs and Fisheries over 3 years were collected. The decision data and text data were classified according to variables and quantified. Prior probability was calculated using a Bayesian network using the quantified data, and fishing ship marine accidents were predicted using backward propagation. Among the two collected datasets, the decision data did not provide the types of fishing ships and fishing areas, and because not all fishing ship accidents were included in the decision data, the text data were selected. The probability of a fishing ship marine accident in which engine damage would occur in the West Sea was 0.0000031%, as calculated by backward propagation. The expected effect of this study is that it is possible to analyze marine accidents suitable for the characteristics of actual fishing ships using new accident notification text data to analyze fishing ship marine accidents. In the future, we plan to conduct research on the causal relationship between variables that affect fishing ship marine accidents.

Korean Inspection System of the Imported Fishing Products : Its Problems and Improvement Directions (수입수산물 검사ㆍ검역제도의 문제점과 정책개선방향)

  • 옥영수
    • The Journal of Fisheries Business Administration
    • /
    • v.26 no.2
    • /
    • pp.93-118
    • /
    • 1995
  • The import quantity of the fishing products is very rapidly increasing in the Korea. In the result, the inspection problems are caused to important issues in the fishing products import managements. The major problems of the Korean fishing products inspection are in the system side and structure side. The important improvement schemes are the changement to positive system in the system side, and the unitary in the structure side.

  • PDF

Comparisom of Fishing Efficiency of Eel Traps (장어 통발어장의 어획상태 비교)

  • Su, Young-Tea;Kim, Gwang-Hong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.13 no.2
    • /
    • pp.15-20
    • /
    • 1977
  • Fishing efficiency of conventional bamboo traps and other traps for eel Conger myriaster, was investigated. The results are as follows: ). The best fishing efficiency was observed when the trap is inclined to the sea bottom with 20 ~ 30 degrees. 2. Plastic traps were better compared with bamboo traps in rigidity and fishing efficiency. 3. Using clips in attaching branch line to main line, the operating time was saved somewhat considerably.

  • PDF

A Study on the Lights and Shapes for the Small Fishing Vessel and the Vessels Towing and Being Towed (소형어선 및 예인선단의 등화 및 형상물에 관한 고찰)

  • Chong, Dae-Yul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.4
    • /
    • pp.421-427
    • /
    • 2015
  • This study aims at reviewing first the cases of marine accidents of small fishing vessels and vessels towing and being towed and, the problems concerning such lights and shapes that could be misunderstood for those in concerned Rules, or that could impair their distinctive characteristics or obstruct to keep a proper look-out. And then I wish to make a suggestion of the necessity of amending the National Laws which stipulate the rules for the ship's lights and shapes as follows; Firstly, by amending the "Standard of Construction and Equipment for the Less Than 10 Gross Tonnage of Small Fishing Vessels" small fishing vessel must be equipped with the lights and shapes that are the same as those of "vessel engaged in fishing" prescribed by Rule 26 of the "COLREG 1972" and Rule 84 of the "Maritime Safety Law Act". Secondly, "Standard of Fishing Vessels Equipment" which stipulate the rules concerning the exception of the running lights and radar reflector for the small fishing vessels must be amended to meet the requirement of Rule 20 of the "Maritime Safety Act". Thirdly, the definition of "Length of the tow" which prescribed by Rule 2 of the "Maritime Safety Act" must be amended to meet the Rule 24 of the "COLREG 1972". And also I wish to adhere to the importance of displaying the adequate vessel lights and shapes by every mariner for preventing marine accidents.

The Relationship between Oceanographic Condition and Fishing Ground Distribution of Yellow Croaker in the East China Sea and the Yellow Sea (동지나해, 황해의 참조기 어장분포와 해황과의 관계)

  • YANG Seong-Ki;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.1
    • /
    • pp.26-34
    • /
    • 1982
  • The East China Sea and the Yellow Sea are abundant in nutritions because of river inflows and are important as the nursery and spawning grounds of demersal and pelagic fishes. The remarkable thermal front between the Yellow Sea Bottom Cold Water and the Tsushima Warm Current is formed in this region, and the fluctuation of this front may affect the variation of the yellow croaker fishing ground. To investigate the mechanism of the yellow croaker fishing ground, the distribution ana seasonal change of the fishing ground are examined by using catch of stow net fishery (Fisheries Research and Development Agency, 1970-1979) and the water temperature data (Japan Hydrographic Association, 1978). The main fishing ground of yellow croaker was nine sea areas (rectangle of 30' latitude by 30' longitude) located at 40-150 nautical miles west and southwest of Jeju Island, the area of which occupies no more than $11\%$ of all fishing grounds, and it appeared that about $70\%$ of total catch of ten years was concentrated in this area. The main fishing periods were from March to May and September to October. The coefficients of variation of the catch for the main fishing ground were from 0.8 to 2.1 and the condition of all fishing grounds was generally unstable. The mean CPUE was 27kg/haul at the main fishing ground, while it was the largest on boundary area of the Yellow Sea Bottom Cold Water. It was found that the seasonal movement of fishing ground is related to the expansion and reduction of the Yellow Sea Bottom Cold Water ($10^{\circ}C$).

  • PDF