• 제목/요약/키워드: fish robot

검색결과 57건 처리시간 0.033초

Robot Fish Tracking Control using an Optical Flow Object-detecting Algorithm

  • Shin, Kyoo Jae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권6호
    • /
    • pp.375-382
    • /
    • 2016
  • This paper realizes control of the motion of a swimming robot fish in order to implement an underwater robot fish aquarium. And it implements positional control of a two-axis trajectory path of the robot fish in the aquarium. The performance of the robot was verified though certified field tests. It provided excellent performance in driving force, durability, and water resistance in experimental results. It can control robot motion, that is, it recognizes an object by using an optical flow object-detecting algorithm, which uses a video camera rather than image-detecting sensors inside the robot fish. It is possible to find the robot's position and control the motion of the robot fish using a radio frequency (RF) modem controlled via personal computer. This paper proposes realization of robot fish motion-tracking control using the optical flow object-detecting algorithm. It was verified via performance tests of lead-lag action control of robot fish in the aquarium.

3 자유도 물고기 로봇의 동적해석 및 운동파라미터 최적화에 관한 연구 (A Study on Optimization of Motion Parameters and Dynamic Analysis for 3-D.O.F Fish Robot)

  • 김형석;;이병룡;유호영
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1029-1037
    • /
    • 2009
  • Recently, the technologies of mobile robots have been growing rapidly in the fields such as cleaning robot, explosive ordnance disposal robot, patrol robot, etc. However, the researches about the autonomous underwater robots have not been done so much, and they still remain at the low level of technology. This paper describes a model of 3-joint (4 links) fish robot type. Then we calculate the dynamic motion equation of this fish robot and use Singular Value Decomposition (SVD) method to reduce the divergence of fish robot's motion when it operates in the underwater environment. And also, we analysis response characteristic of fish robot according to the parameters of input torque function and compare characteristic of fish robot with 3 joint and fish robot with 2 joint. Next, fish robot's maximum velocity is optimized by using the combination of Hill Climbing Algorithm (HCA) and Genetic Algorithm (GA). HCA is used to generate the good initial population for GA and then use GA is used to find the optimal parameters set that give maximum propulsion power in order to make fish robot swim at the fastest velocity.

물체 형상인식 알고리즘을 이용한 물고기 로봇 위치 검출에 관한 연구 (A Study of Detecting The Fish Robot Position Using The Object Boundary Algorithm)

  • 아마르나 바르마 앙가니;강민정;신규재
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1350-1353
    • /
    • 2015
  • In this paper, we have researched about how to detect the fish robot objects in aquarium. We had used designed fish robots DOMI ver1.0, which had researched and developed for aquarium underwater robot. The model of the robot fish is analysis to maximize the momentum of the robot fish and the body of the robot is designed through the analysis of the biological fish swimming. We are planned to non-external equipment to find the position and manipulated the position using creating boundary to fish robot to detect the fish robot objects. Also, we focused the detecting fish robot in aquarium by using boundary algorithm. In order to the find the object boundary, it is filtering the video frame to picture frames and changing the RGB to gray. Then, applied the boundary algorithm stand of equations which operates the boundary for objects. We called these procedures is kind of image processing that can distinguish the objects and background in the captured video frames. It was confirmed that excellent performance in the field test such as filtering image, object detecting and boundary algorithm.

Development of Robot Fish, ROFI 1.1

  • Kwack, Sang-Hyun;Kim, Yong-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • 제11권1호
    • /
    • pp.1-10
    • /
    • 2007
  • This study introduces the development of robot fish ROFI 1.1. Today, robot fish is one of strong candidates for next-generation UUV. The present paper describes the design, manufacturing, and operation tests of the robot fish developed at Seoul National University. The very first robot fish in Korea, ROFI 1.1 is operated by a wireless remote controller. Its overall length is 680mm, and weight is 8.8kg. The fore body contains main mechanical and electrical systems and is covered by a FRP skin. The aft body has a mechanical bone system that mimics fish bones, and its skin is made of flexible silicon sponge to allow elastic motion for propulsion. It is found that this mechanical system creates effective and realistic fish-like swimming mode. It is observed that the normal and maximum advancing speeds of ROFI 1.1 are about 1 and 2 m/sec, and the turning radius is between $0.7{\sim}2.5m$, depending on the turning mechanism.

생체모사 물고기 로봇을 이용한 물고기 운동의 유체역학적 해석 (Hydrodynamics Analysis of Fish Locomotion Using a Biomimetic Fish Robot)

  • 한철희;이승희;신창록;박종현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.435-440
    • /
    • 2007
  • Fish-mimetic robots or fish-mimetic propulsors have been developed or under construction. A mechanical system cannot have the same functions as bio-organic systems. Thus, the hydrodynamic characteristics of fish locomotion should be well understood in order to develop and control a feasible intelligent fish-mimetic robot with its optimal motion pattern known. In this paper, a mackerel-mimetic robot fish is fabricated in order to understand the hydrodynamic characteristics of fish locomotion. A simplified unsteady flow theory is also applied to the hydrodynamic analysis of the motion of the anterior part of the robotic fish. The normal and axial forces of the fish are measured by changing the amplitude and frequencies of fanning motion. It is found that the present theoretical results agree with the measured data.

  • PDF

물고기형 수중로봇의 유영메커니즘 및 알고리즘 개발(1) (Development of Swimming Mechanism and Algorithm for Fish-Type Underwater Robot(1))

  • 류영선
    • 로봇학회논문지
    • /
    • 제4권1호
    • /
    • pp.43-48
    • /
    • 2009
  • Generally, underwater vehicle type of propeller shows low efficiency about 50%-55%. However, the efficiency of swimming mechanism of a fish is 60%-70%, more efficient about 20% than screw propellers. Recently, research of underwater vehicle type of fish increase due to its good efficiency and is regarded as a typical bio-mimical robot. In this research, a new algorithm and mechanism that show low energy consumption imitating swimming mechanism of fish proposed increasing speed and running time in field trial.

  • PDF

생체 모방형의 아쿠아리움 관상어 로봇 개발 (Development of Autonomous Bio-Mimetic Ornamental Aquarium Fish Robotic)

  • 신규재
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권5호
    • /
    • pp.219-224
    • /
    • 2015
  • 본 논문의 수중로봇 도미(Domi) ver1.0는 관상어용 물고기 로봇 개발을 목표로 연구 개발되었다. 물고기 로봇은 머리, 1단, 2단 몸체와 꼬리 부분과 2개의 구동 관절로 구성되어있다. 물고기 로봇의 추력에 적합한 구동부 선정을 위하여 물고기 로봇 모델링과 유영 해석을 통하여 관절 구동부가 설계되었다. 또한 물고기 로봇의 유영알고리즘은 Lighthill 운동학 해석을 기초로 생체 모방의 유영 근사화 방법을 적용하였다. 설계된 물고기는 수동유영 및 자율운영모드로 동작된다. 수동유영모드는 RF 송수신기를 이용하여 운용되며, 자율유영모드는 머리 부분에 부착된 PSD센서, 마이컴 제어부, 서보 구동장치에 의하여 구현된다. 본 설계된 물고기 로봇 도미 ver1.0은 수중 현장시험 평가를 통하여 추력, 내구성, 방수성 등의 성능이 우수함을 확인하였다.

물고기 로봇 추적 제어 구현 (Implementation of Fish Robot Tracking-Control Methods)

  • 이남구;김병준;신규재
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.885-888
    • /
    • 2018
  • This paper researches a way of detecting fish robots moving in an aquarium. The fish robot was designed and developed for interactions with humans in aquariums. It was studied merely to detect a moving object in an aquarium because we need to find the positions of moving fish robots. The intention is to recognize the location of robotic fish using an image processing technique and a video camera. This method is used to obtain the velocity for each pixel in an image, and assumes a constant velocity in each video frame to obtain positions of fish robots by comparing sequential video frames. By using this positional data, we compute the distance between fish robots using a mathematical expression, and determine which fish robot is leading and which one is lagging. Then, the lead robot will wait for the lagging robot until it reaches the lead robot. The process runs continuously. This system is exhibited in the Busan Science Museum, satisfying a performance test of this algorithm.

색상 검출 알고리즘을 활용한 물고기로봇의 위치인식과 군집 유영제어 (Position Detection and Gathering Swimming Control of Fish Robot Using Color Detection Algorithm)

  • 무하마드 아크바르;신규재
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.510-513
    • /
    • 2016
  • Detecting of the object in image processing is substantial but it depends on the object itself and the environment. An object can be detected either by its shape or color. Color is an essential for pattern recognition and computer vision. It is an attractive feature because of its simplicity and its robustness to scale changes and to detect the positions of the object. Generally, color of an object depends on its characteristics of the perceiving eye and brain. Physically, objects can be said to have color because of the light leaving their surfaces. Here, we conducted experiment in the aquarium fish tank. Different color of fish robots are mimic the natural swim of fish. Unfortunately, in the underwater medium, the colors are modified by attenuation and difficult to identify the color for moving objects. We consider the fish motion as a moving object and coordinates are found at every instinct of the aquarium to detect the position of the fish robot using OpenCV color detection. In this paper, we proposed to identify the position of the fish robot by their color and use the position data to control the fish robot gathering in one point in the fish tank through serial communication using RF module. It was verified by the performance test of detecting the position of the fish robot.