• Title/Summary/Keyword: first-order shear deformation theory (FSDT)

Search Result 153, Processing Time 0.03 seconds

A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates

  • Remil, Aicha;Benrahou, Kouider Halim;Draiche, Kada;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.325-337
    • /
    • 2019
  • In the present article, cross ply laminated composite plates are considered and a simple sinusoidal shear deformation model is tested for analyzing their flexural, stability and dynamic behaviors. The model contains only four unknown variables that are five in the first order shear deformation theory (FSDT) or other higher order models. The in-plane kinematic utilizes undetermined integral terms to quantitatively express the shear deformation influence. In the proposed theory, the conditions of zero shear stress are respected at bottom and top faces of plates without considering the shear correction coefficient. Equations of motion according to the proposed formulation are deduced by employing the virtual work principle in its dynamic version. The analytical solution is determined via double trigonometric series proposed by Navier. The stresses, displacements, natural frequencies and critical buckling forces computed using present method are compared with other published data where a good agreement between results is demonstrated.

Vibration of a Circular plate on Pasternak foundation with variable modulus due to moving mass

  • Alile, Mohsen Rezvani;Foyouzat, Mohammad Ali;Mofid, Massood
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.757-770
    • /
    • 2022
  • In this paper, the vibration of a moderately thick plate to a moving mass is investigated. Pasternak foundation with a variable subgrade modulus is considered to tackle the shortcomings of Winkler model, and an analytical-numerical solution is proposed based on the eigenfunction expansion method. Parametric studies by using both CPT (Classical Plate Theory) and FSDT (First-Order Shear Deformation Plate Theory) are carried out, and, the differences between them are also highlighted. The obtained results reveal that utilizing FSDT without considering the rotary inertia leads to a smaller deflection in comparison with CPT pertaining to a thin plate, while it demonstrates a greater response for plates of higher thicknesses. Moreover, it is shown that CPT is unable to properly capture the variation of the plate thickness, thereby diminishing the accuracy as the thickness increases. The outcomes also indicate that the presence of a foundation contributes more to the dynamic response of thin plates in comparison to moderately thick plates. Furthermore, the findings suggest that the performance of the moving force approach for a moderately thick plate, in contrast to a thin plate, appears to be acceptable and it even provides a much better estimation in the presence of a foundation.

Coupled Vibration of Functionally Graded Cylindrical Shells Conveying Fluid (유체 유동을 고려한 경사기능재료 원통셸의 연성진동)

  • Kim, Young-Wann;Kim, Kyu-Ho;Wi, Eun-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1119-1125
    • /
    • 2009
  • The coupled fluid-structure interaction problem is analyzed using the theoretical method to investigate the coupled vibration characteristics of functionally graded material(FGM) cylindrical shells conveying an incompressible, inviscid fluid. Material properties are assumed to vary continuously through the thickness according to a power law distribution in terms of the volume fraction of the constituents. The steady flow of fluid is described by the classical potential flow theory. The motion of shell represented by the first order shear deformation theory(FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be taken into consideration by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with exiting results.

Critical Fluid Velocity of Fluid-conveying Cantilevered Cylindrical Shells with Intermediate Support (중간 지지된 유체 유동 외팔형 원통셸의 임계유속)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.422-429
    • /
    • 2011
  • The critical fluid velocity of cantilevered cylindrical shells subjected to internal fluid flow is investigated in this study. The fluid-structure interaction is considered in the analysis. The cantilevered cylindrical shell is supported intermediately at an arbitrary axial position. The intermediate support is simulated by two types of artificial springs: translational and rotational spring. It is assumed that the artificial springs are placed continuously and uniformly on the middle surface of an intermediate support along the circumferential direction. The steady flow of fluid is described by the classical potential flow theory. The motion of shell is represented by the first order shear deformation theory (FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with existing results.

A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions

  • Rabhi, Mohamed;Benrahou, Kouider Halim;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Adda Bedia, E.A.;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.119-132
    • /
    • 2020
  • In this study a new innovative three unknowns trigonometric shear deformation theory is proposed for the buckling and vibration responses of exponentially graded sandwich plates resting on elastic mediums under various boundary conditions. The key feature of this theoretical formulation is that, in addition to considering shear deformation effect, it has only three unknowns in the displacement field as in the case of the classical plate theory (CPT), contrary to five as in the first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). Material characteristics of the sandwich plate faces are considered to vary within the thickness direction via an exponential law distribution as a function of the volume fractions of the constituents. Equations of motion are obtained by employing Hamilton's principle. Numerical results for buckling and free vibration analysis of exponentially graded sandwich plates under various boundary conditions are obtained and discussed. Verification studies confirmed that the present three -unknown shear deformation theory is comparable with higher-order shear deformation theories which contain a greater number of unknowns.

Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT

  • Nebab, Mokhtar;Atmane, Hassen Ait;Bennai, Riadh;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.511-525
    • /
    • 2019
  • This paper presents an analytical study of wave propagation in simply supported graduated functional plates resting on a two-parameter elastic foundation (Pasternak model) using a new theory of high order shear strain. Unlike other higher order theories, the number of unknowns and governing equations of the present theory is only four unknown displacement functions, which is even lower than the theory of first order shear deformation (FSDT). Unlike other elements, the present work includes a new field of motion, which introduces indeterminate integral variables. The properties of the materials are assumed to be ordered in the thickness direction according to the two power law distributions in terms of volume fractions of the constituents. The wave propagation equations in FG plates are derived using the principle of virtual displacements. The analytical dispersion relation of the FG plate is obtained by solving an eigenvalue problem. Numerical examples selected from the literature are illustrated. A good agreement is obtained between the numerical results of the current theory and those of reference. A parametric study is presented to examine the effect of material gradation, thickness ratio and elastic foundation on the free vibration and phase velocity of the FG plate.

Improved HSDT accounting for effect of thickness stretching in advanced composite plates

  • Bouhadra, Abdelhakim;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Benyoucef, Samir;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.61-73
    • /
    • 2018
  • In this article, a higher shear deformation theory (HSDT) is improved to consider the influence of thickness stretching in functionally graded (FG) plates. The proposed HSDT has fewer numbers of variables and equations of motion than the first-order shear deformation theory (FSDT), but considers the transverse shear deformation influences without requiring shear correction coefficients. The kinematic of the present improved HSDT is modified by considering undetermined integral terms in in-plane displacements and a parabolic distribution of the vertical displacement within the thickness, and consequently, the thickness stretching influence is taken into account. Analytical solutions of simply supported FG plates are found, and the computed results are compared with 3D solutions and those generated by other HSDTs. Verification examples demonstrate that the developed theory is not only more accurate than the refined plate theory, but also comparable with the HSDTs which use more number of variables.

Bending analysis of composite skew cylindrical shell panel

  • Haldar, Salil;Majumder, Aditi;Kalita, Kanak
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.125-131
    • /
    • 2019
  • A nine node isoparametric plate bending element is used for bending analysis of laminated composite skew cylindrical shell panels. Both thick and thin shell panels are solved. Rotary inertia and shear deformation are incorporated by considering first order shear deformation theory. The analysis is performed considering shallow shell theory. Both shallow and moderately deep skew cylindrical shells are investigated. Skew cylindrical shell panels having different thickness ratios (h/a), radius to length ratios (R/a), ply angle orientations, number of layers, aspect ratio (b/a), boundary conditions and various loading (concentrated, uniformly distributed, linear varying and doubly sinusoidal varying) conditions are analysed. Various new results are presented.

A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells

  • Zine, Abdallah;Tounsi, Abdelouahed;Draiche, Kada;Sekkal, Mohamed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.125-137
    • /
    • 2018
  • In this work, the bending and free vibration analysis of multilayered plates and shells is presented by utilizing a new higher order shear deformation theory (HSDT). The proposed involves only four unknowns, which is even less than the first shear deformation theory (FSDT) and without requiring the shear correction coefficient. Unlike the conventional HSDTs, the present one presents a novel displacement field which incorporates undetermined integral variables. The equations of motion are derived by using the Hamilton's principle. These equations are then solved via Navier-type, closed form solutions. Bending and vibration results are found for cylindrical and spherical shells and plates for simply supported boundary conditions. Bending and vibration problems are treated as individual cases. Panels are subjected to sinusoidal, distributed and point loads. Results are presented for thick to thin as well as shallow and deep shells. The computed results are compared with the exact 3D elasticity theory and with several other conventional HSDTs. The proposed HSDT is found to be precise compared to other several existing ones for investigating the static and dynamic response of isotropic and multilayered composite shell and plate structures.

A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations

  • Soltani, Kheira;Bessaim, Aicha;Houari, Mohammed Sid Ahmed;Kaci, Abdelhakim;Benguediab, Mohamed;Tounsi, Abdelouahed;Alhodaly, Mohammed Sh
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.13-29
    • /
    • 2019
  • This work presents the buckling investigation of functionally graded plates resting on two parameter elastic foundations by using a new hyperbolic plate theory. The main advantage of this theory is that, in addition to including the shear deformation effect, the displacement field is modelled with only four unknowns and which is even less than the first order shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT) by introducing undetermined integral terms, hence it is unnecessary to use shear correction factors. The governing equations are derived using Hamilton's principle and solved using Navier's steps. The validation of the proposed theoretical model is performed to demonstrate the efficacy of the model. The effects of various parameters like the Winkler and Pasternak modulus coefficients, inhomogeneity parameter, aspect ratio and thickness ratio on the behaviour of the functionally graded plates are studied. It can be concluded that the present theory is not only accurate but also simple in predicting the critical buckling loads of functionally graded plates on elastic foundation.