• Title/Summary/Keyword: first-order shear deformation theory

Search Result 404, Processing Time 0.024 seconds

Using DQ method for vibration analysis of a laminated trapezoidal structure with functionally graded faces and damaged core

  • Vanessa Valverde;Patrik Viktor;Sherzod Abdullaev;Nasrin Bohlooli
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.73-91
    • /
    • 2024
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with a damaged core and FG wavy CNT-reinforced face sheets. A damage model is introduced to provide an analytical description of an irreversible rheological process that causes the decay of the mechanical properties, in terms of engineering constants. An isotropic damage is considered for the core of the sandwich structure. The classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for the trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. After demonstrating the convergence and accuracy of the method, different parametric studies for laminated trapezoidal structure including carbon nanotubes waviness (0≤w≤1), CNT aspect ratio (0≤AR≤4000), face sheet to core thickness ratio (0.1 ≤ ${\frac{h_f}{h_c}}$ ≤ 0.5), trapezoidal side angles (30° ≤ α, β ≤ 90°) and damaged parameter (0 ≤ D < 1) are carried out. It is explicated that the damaged core and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. Results show that by increasing the values of waviness index (w), normalized natural frequency of the structure decreases, and the straight CNT (w=0) gives the highest frequency. For an overall comprehension on vibration of laminated trapezoidal plates, some selected vibration mode shapes were graphically represented in this study.

Nonlinear free and forced vibrations of oblique stiffened porous FG shallow shells embedded in a nonlinear elastic foundation

  • Kamran Foroutan;Liming Dai
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.33-46
    • /
    • 2024
  • The present research delves into the analysis of nonlinear free and forced vibrations of porous functionally graded (FG) shallow shells reinforced with oblique stiffeners, which are embedded in a nonlinear elastic foundation (NEF) subjected to external excitation. Two distinct types of PFG shallow shells, characterized by even and uneven porosity distribution along the thickness direction, are considered in the research. In order to model the stiffeners, Lekhnitskii's smeared stiffeners technique is implemented. With the stress function and first-order shear deformation theory (FSDT), the nonlinear model of the oblique stiffened shallow shells is established. The strain-displacement relationships for the system are derived via the FSDT and utilization of the von-Kármán's geometric assumptions. To discretize the nonlinear governing equations, the Galerkin method is employed. The model such developed allows analysis of the effects of the stiffeners with various angles as desired, in addition to the quantitative investigation on the influence of the surrounding nonlinear elastic foundations. To numerically solve the problem of vibrations, the 4th-order P-T method is used, as this method, known for its enhanced accuracy and reliability, proves to be an effective choice. The validation of the present research findings includes a comprehensive comparison with outcomes documented in existing literature. Additionally, a comparative analysis of the numerical results against those obtained using the 4th Runge-Kutta method is performed. The impact of stiffeners with varying angles and material parameters on the vibration characteristics of the present system is also explored. The researchers and engineers working in this field may use the results of this study as benchmarks in their design and research for the considered shell systems.

Finite element based dynamic analysis of multilayer fibre composite sandwich plates with interlayer delaminations

  • Jayatilake, Indunil N.;Karunasena, Warna;Lokuge, Weena
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.15-28
    • /
    • 2016
  • Although the aircraft industry was the first to use fibre composites, now they are increasingly used in a range of structural applications such as flooring, decking, platforms and roofs. Interlayer delamination is a major failure mode which threatens the reliability of composite structures. Delamination can grow in size under increasing loads with time and hence leads to severe loss of structural integrity and stiffness reduction. Delamination reduces the natural frequency and as a consequence may result in resonance. Hence, the study of the effects of delamination on the free vibration behaviour of multilayer composite structures is imperative. The focus of this paper is to develop a 3D FE model and investigate the free vibration behaviour of fibre composite multilayer sandwich panels with interlayer delaminations. A series of parametric studies are conducted to assess the influence of various parameters of concern, using a commercially available finite element package. Additionally, selected points in the delaminated region are connected appropriately to simulate bolting as a remedial measure to fasten the delamination region in the aim of reducing the effects of delamination. First order shear deformation theory based plate elements have been used to model each sandwich layer. The findings suggest that the delamination size and the end fixity of the plate are the most important factors responsible for stiffness reduction due to delamination damage in composite laminates. It is also revealed that bolting the delaminated region can significantly reduce the natural frequency variation due to delamination thereby improving the dynamic performance.

Combination resonances of porous FG shallow shells reinforced with oblique stiffeners subjected to a two-term excitation

  • Kamran Foroutan;Liming Dai;Haixing Zhao
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.391-406
    • /
    • 2024
  • The present research investigates the combination resonance behaviors of porous FG shallow shells reinforced with oblique stiffeners and subjected to a two-term excitation. The oblique stiffeners considered in this research reinforce the shell internally and externally. To model the stiffeners, Lekhnitskii's smeared stiffeners technique is utilized. According to the first-order shear deformation theory (FSDT) and stress functions, a nonlinear model of the oblique stiffened shallow shell is established. With regard to the FSDT and von-Kármán nonlinear geometric assumptions, the stress-strain relationships for the present shell system are developed. Also, in order to discretize the nonlinear governing equations, the Galerkin method is implemented. To obtain the required relations for investigating the combination resonance theoretically, the method of multiple scales is applied. For verifying the results of the present research, generated results are compared with previous research. Additionally, a comparison with the P-T method is conducted to increase the validity of the generated results, as this method has illustrated advantages over other numerical methods in terms of accuracy and reliability. In this method, the piecewise constant argument is used jointly with the Taylor series expansion, which is why it is named the P-T method. The effects of stiffeners with different angles, and the effects of material parameters on the combination resonance behaviors of the present system are addressed. With the findings of this research, researchers and engineers in this field may use them as benchmarks for their design and research of porous FG shallow shells.

Nonlinear Analysis of Functionally Graded Materials Plates and Shells (점진기능재료(FGM) 판과 쉘의 비선형 해석)

  • Han, Sung-Cheon;Lee, Chang-Soo;Kim, Gi-Dong;Park, Weon-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.61-71
    • /
    • 2007
  • Navier's and Finite element solutions based on the first-order shear deformation theory are presented for the analysis of through-thickness functionally graded plates and shells. The functionally graded materials are considered: a sigmoid function is utilized for the mechanical properties through the thickness of the isotropic structure which varies smoothly through the plate and shell thickness. The formulation of a nonlinear 9-node Element-based Lagrangian shell element is presented for the geometrically nonlinear analysis. Natural-coordinate-based strains are used in present shell element. Numerical results of the linear and nonlinear analysis are presented to show the effect of the different top/bottom elastic modulus, loading conditions, aspect ratios and side-to-thickness ratios on the mechanical behaviors. Besides, the result according to the variation of the power-law index of isotropic functionally graded structures is investigated.

Modeling of Damage Initiation in Singly Oriented Ply Fiber-Metal Laminate under Concentrated Loading Conditions (집중하중을 받는 일방향 보강 섬유 금속 적층판의 손상 개시 모델링)

  • 남현욱;변현중;정성욱;한경섭
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.42-50
    • /
    • 2001
  • Modeling of damage initiation in singly oriented ply (SOP) Fiber Metal Laminate (FML) under concentrated loading conditions was studied. The finite element method (FEM) base on the first order shear deformation theory is used for th\ulcorner modeling of damage initiation in SOP FML. The failure indices (FI) of the fiber prepreg and the metal laminate were calculated by using the Tasi-Hill failure criterion and the Miser yield criterion, respectively. To verify the present method, the failure analysis was conducted under uniaxial loading and cylindrical bending, then the analysis under concentrated load was conducted. The results show that the analysis is reasonable. An indentation test was conducted to compare a damage initiation load with a calculated FI. The test was conducted under two side clamped conditions to study the fiber orientation effect. Indentation curve was fitted using the Hertz equation and a damage initiation load is defined that the point which deviate the fitted curve from the real indentation curve. The damage initiation loads were obtained under various fiber orientations and compared with calculated FIs. The experiment was well matched with calculated FI. This results shows that the present method is suitable for the damage initiation modeling of SOP FML.

  • PDF

Nonlinear Dynamic Behaviors of Laminated Composite Structures Containing Central Cutouts (중앙개구부를 갖는 복합신소재 적층 구조의 비선형 동적 거동)

  • Ji, Hyo-Seon;Lee, Sang-Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.607-614
    • /
    • 2011
  • This study deals with thegeometrical nonlinear dynamic behavior of laminated plates made of advanced composite materials (ACMs), which contain central cutouts. Based on the first-order shear deformation plate theory (FSDT), the Newmark method and Newton-Raphson iteration wereused for the nonlinear dynamic solution. The effects of the cutout sizes and lay-up sequences on the nonlinear dynamic response for various parameters werestudied using a nonlinear dynamic finite element program that was developed for this study. The several numerical results agreed well with those reported by other investigators for square composite plates with or without central cutouts, and the new results reported in this paper showed significant interactions between the cutout and the layup sequence in the laminate. Key observation points are discussed and a brief design guide for laminates with central cutouts is given.

Finite element dynamic analysis of laminated composite shell structures considering geometric nonlinear effects (기하학적 비선형 효과를 고려한 복합재료 적층 쉘 구조의 유한요소 동적 해석)

  • Lee, Sang-Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5979-5986
    • /
    • 2013
  • This study carried out a geometrical nonlinear dynamic analysis of laminated composite shell structures. Based on the first-order shear deformation shell theory and nonlinear formulation of Sanders, the Newmark method and Newton-Raphson iteration are used for dynamic solution considering nonlinear effects. The effects of radius, fiber angles, and layup sequences on the nonlinear dynamic response for various parameters are studied using a nonlinear dynamic finite element program developed for this study. The several numerical results were in good agreement with those reported by other investigators for square composite plates, and the new results reported in this paper show the significant interactions between the radius, fiber angles and layup sequence in the laminate. Key observation points are discussed and a brief design guideline of laminated composite shells is given.

Analysis of critical fluid velocity and heat transfer in temperature-dependent nanocomposite pipes conveying nanofluid subjected to heat generation, conduction, convection and magnetic field

  • Fakhar, Mohammad Hosein;Fakhar, Ahmad;Tabatabaei, Hamidreza
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.281-292
    • /
    • 2019
  • In this paper, analysis of critical fluid velocity and heat transfer in the nanocomposite pipes conveying nanofluid is presented. The pipe is reinforced by carbon nanotubes (CNTs) and the fluid is mixed by $AL_2O_3$ nanoparticles. The material properties of the nanocomposite pipe and nanofluid are considered temperature-dependent and the structure is subjected to magnetic field. The forces of fluid viscosity and turbulent pressure are obtained using momentum equations of fluid. Based on energy balance, the convection of inner and outer fluids, conduction of pipe and heat generation are considered. For mathematical modeling of the nanocomposite pipes, the first order shear deformation theory (FSDT) and energy method are used. Utilizing the Lagrange method, the coupled pipe-nanofluid motion equations are derived. Applying a semi-analytical method, the motion equations are solved for obtaining the critical fluid velocity and critical Reynolds and Nusselt numbers. The effects of CNTs volume percent, $AL_2O_3$ nanoparticles volume percent, length to radius ratio of the pipe and shell surface roughness were shown on the critical fluid velocity, critical Reynolds and Nusselt numbers. The results are validated with other published work which shows the accuracy of obtained results of this work. Numerical results indicate that for heat generation of $Q=10MW/m^3$, adding 6% $AL_2O_3$ nanoparticles to the fluid increases 20% the critical fluid velocity and 15% the Nusselt number which can be useful for heat exchangers.

Domain decomposition technique to simulate crack in nonlinear analysis of initially imperfect laminates

  • Ghannadpour, S. Amir M.;Karimi, Mona
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.603-619
    • /
    • 2018
  • In this research, an effective computational technique is carried out for nonlinear and post-buckling analyses of cracked imperfect composite plates. The laminated plates are assumed to be moderately thick so that the analysis can be carried out based on the first-order shear deformation theory. Geometric non-linearity is introduced in the way of von-Karman assumptions for the strain-displacement equations. The Ritz technique is applied using Legendre polynomials for the primary variable approximations. The crack is modeled by partitioning the entire domain of the plates into several sub-plates and therefore the plate decomposition technique is implemented in this research. The penalty technique is used for imposing the interface continuity between the sub-plates. Different out-of-plane essential boundary conditions such as clamp, simply support or free conditions will be assumed in this research by defining the relevant displacement functions. For in-plane boundary conditions, lateral expansions of the unloaded edges are completely free while the loaded edges are assumed to move straight but restricted to move laterally. With the formulation presented here, the plates can be subjected to biaxial compressive loads, therefore a sensitivity analysis is performed with respect to the applied load direction, along the parallel or perpendicular to the crack axis. The integrals of potential energy are numerically computed using Gauss-Lobatto quadrature formulas to get adequate accuracy. Then, the obtained non-linear system of equations is solved by the Newton-Raphson method. Finally, the results are presented to show the influence of crack length, various locations of crack, load direction, boundary conditions and different values of initial imperfection on nonlinear and post-buckling behavior of laminates.