• Title/Summary/Keyword: first-arrival times

Search Result 73, Processing Time 0.029 seconds

A Study on the Improvement of Microseismic Monitoring Accuracy by Borehole 3-Component Measurement Field Experiments (시추공 3성분 계측 현장실험을 통한 미소지진 모니터링 정확도 향상 연구)

  • Kim, Jungyul;Kim, Yoosung;Yun, Jeumdong;Kwon, Sungil;Kwon, Hyongil;Park, Seongbin;Park, Juhyun
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In order to improve the accuracy of microseismic epicenter location through the inversion techniques using P and S wave first arrivals, field experiments of microseismic monitoring were performed using borehole 3-component geophones. The direction of epicenter was estimated from the hodograms of P-wave first arrivals through the weight drop experiments in which the $\times$ component of 3-component geophone was aligned to the magnetic north. The picking of S wave first arrival was possible in the polarization filtered data even if S waves are difficult to be identified in raw data. The inversion technique using only P wave first arrival times can often converge to the local minimum when the initial values for epicenter are largely apart from the true epicenter, so that the correct solution can not be found. To solve this problem, the epicenter determination method using differences between P and S wave arrival times was used to estimate proper initial values of epicenter. The inversion result using only P-wave first arrival times which started from the estimated initial values showed the improved accuracy of the epicenter location.

Estimation of epicenter using an empirical relationship between epicentral distance and traveltime of the first arrival (초동 전파시간과 진앙거리의 경험적인 관계를 이용한 진앙 추정)

  • Sheen, Dong-Hoon;Baag, Chang-Eob;Hwang, Eui-Hong;Jeon, Young-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.64-68
    • /
    • 2007
  • The classic graphical method to determine the epicenter uses differences between the arrival times of P and S waves at each station. In this research, a robust approach is proposed, which provides a fast and intuitive estimation of earthquake epicenters. This method uses an empirical relationship between epicentral distance and traveltime of the first arrival P phase of local or regional earthquake. The relationship enables us to estimate epicentral distances and draw epicentral circles from each station with P-traveltimes counted from a probable origin time. As the assigned time is getting close to the origin time of the earthquake, epicentral circles begin to intersect each other at a possible location of the epicenter. Then the possibility of the epicenter can be expressed by a function of the time and the space. We choose the location which gives the minimum standard deviation of the origin time as an estimated epicenter. In this research, 918 P arrival times from 84 events occurring from 2005 to 2006 listed in the KMA earthquake catalog are used to determine the empirical P-traveltime function of epicentral distances.

  • PDF

이산 웨이브릿 변환을 이용한 탄성파 주시결정

  • Kim, Jin-Hu;Lee, Sang-Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.2
    • /
    • pp.113-120
    • /
    • 2001
  • The discrete wavelet transform(DWT) has potential as a tool for supplying discriminatory attributes with which to distinguish seismic events. The wavelet transform has the great advantage over the Fourier transform in being able to localize changes. In this study, a discrete wavelet transform is applied to seismic traces for identifying seismic events and picking of arrival times for first breaks and S-wave arrivals. The precise determination of arrival times can greatly improve the quality of a number of geophysical studies, such as velocity analysis, refraction seismic survey, seismic tomography, down-hole and cross-hole survey, and sonic logging, etc. provide precise determination of seismic velocities. Tests for picking of P- and S- wave arrival times with the wavelet transform method is conducted with synthetic seismic traces which have or do not have noises. The results show that this picking algorithm can be successfully applied to noisy traces. The first arrival can be precisely determined with the field data, too.

  • PDF

Application of GTH-like algorithm to Markov modulated Brownian motion with jumps

  • Hong, Sung-Chul;Ahn, Soohan
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.477-491
    • /
    • 2021
  • The Markov modulated Brownian motion is a substantial generalization of the classical Brownian Motion. On the other hand, the Markovian arrival process (MAP) is a point process whose family is dense for any stochastic point process and is used to approximate complex stochastic counting processes. In this paper, we consider a superposition of the Markov modulated Brownian motion (MMBM) and the Markovian arrival process of jumps which are distributed as the bilateral ph-type distribution, the class of which is also dense in the space of distribution functions defined on the whole real line. In the model, we assume that the inter-arrival times of the MAP depend on the underlying Markov process of the MMBM. One of the subjects of this paper is introducing how to obtain the first passage probabilities of the superposed process using a stochastic doubling algorithm designed for getting the minimal solution of a nonsymmetric algebraic Riccatti equation. The other is to provide eigenvalue and eigenvector results on the superposed process to make it possible to apply the GTH-like algorithm, which improves the accuracy of the doubling algorithm.

TLSA: A Two Level Scheduling Algorithm for Multiple packets Arrival in TSCH Networks

  • Asuti, Manjunath G.;Basarkod, Prabhugoud I.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3201-3223
    • /
    • 2020
  • Wireless communication has become the promising technology in the recent times because of its applications in Internet of Things( IoT) devices. The IEEE 802.15.4e has become the key technology for IoT devices which utilizes the Time-Slotted Channel Hopping (TSCH) networks for the communication between the devices. In this paper, we develop a Two Level Scheduling Algorithm (TLSA) for scheduling multiple packets with different arrival rate at the source nodes in a TSCH networks based on the link activated by a centralized scheduler. TLSA is developed by considering three types of links in a network such as link i with packets arrival type 1, link j with packets arrival type 2, link k with packets arrival type 3. For the data packets arrival, two stages in a network is considered.At the first stage, the packets are considered to be of higher priority.At the second stage, the packets are considered to be of lower priority.We introduce level 1 schedule for the packets at stage 1 and level 2 schedule for the packets at stage 2 respectively. Finally, the TLSA is validated with the two different energy functions i.e., y = eax - 1 and y = 0.5x2 using MATLAB 2017a software for the computation of average and worst ratios of the two levels.

Effective simulation-based optimization algorithm for the aircraft runway scheduling problem

  • Wided, Ali;Fatima, Bouakkaz
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.335-347
    • /
    • 2022
  • Airport operations are well-known as a bottleneck in the air traffic system, putting growing pressure on the world's busiest airports to schedule arrivals and departures as efficiently as possible. Effective planning and control are essential for increasing airport efficiency and reducing aircraft delays. Many algorithms for controlling the arrival/departure queuing area are handled, considering it as first in first out queues, where any available aircraft can take off regardless of its relative sequence with other aircraft. In the suggested system, this problem was compared to the problem of scheduling n tasks (plane takeoffs and landings) on a multiple machine (runways). The proposed technique decreases delays (via efficient runway allocation or allowing aircraft to be expedited to reach a scheduled time) to enhance runway capacity and decrease delays. The aircraft scheduling problem entails arranging aircraft on available runways and scheduling their landings and departures while considering any operational constraints. The topic of this work is the scheduling of aircraft landings and takeoffs on multiple runways. Each aircraft's takeoff and landing schedules have time windows, as well as minimum separation intervals between landings and takeoffs. We present and evaluate a variety of comprehensive concepts and solutions for scheduling aircraft arrival and departure times, intending to reduce delays relative to scheduled times. When compared to First Come First Serve scheduling algorithm, the suggested strategy is usually successful in reducing the average waiting time and average tardiness while optimizing runway use.

Advanced Distributed Arrival Time Control for Single Machine Problem in Dynamic Scheduling Environment (동적 스케줄링을 위한 분산 도착시간 제어 (Distributed Arrival Time Control) 알고리즘의 개량)

  • Ko, Jea-Ho;Ok, Chang-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.1
    • /
    • pp.31-40
    • /
    • 2012
  • Distributed arrival time control (DATC) is a distributed feedback control algorithm for real-time scheduling problems in dynamic operational environment. Even though DATC has provided excellent performance for dynamic scheduling problems, it can be improved by considering the following considerations. First, the original DATC heavily depends on the quality of initial solution. In this paper, well-known dispatching rules are incorporated DATC algorithm to enhance its performance. Second, DATC improves its solution with adjusting virtual arrival times of jobs to be scheduled in proportion to the gap between completion time and due date iteratively. Since this approach assigns the same weight to all gaps generated with iterations, it fails to utilize significantly more the latest information (gap) than the previous ones. To overcome this issue we consider exponential smoothing which enable to assign different weight to different gaps. Using these two consideration This paper proposes A-DATC (Advanced-DATC). We demonstrate the effectiveness of the proposed scheduling algorithm through computational results.

Application of (Max, +)-algebra to the Waiting Times in Deterministic 2-node Tandem Queues with Blocking ((Max, +)-대수를 이용한 2-노드 유한 버퍼 일렬대기행렬에서의 대기시간 분석)

  • Seo Dong-Won
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.1
    • /
    • pp.149-159
    • /
    • 2005
  • In this study, we consider characteristics of stationary waiting times in single-server 2-node tandem queues with a finite buffer, a Poisson arrival process and deterministic service times. The system has two buffers: one at the first node is infinite and the other one at the second node is finite. We show that the sojourn time or departure process does not depend on the capacity of the finite buffer and on the order of nodes (service times), which are the same as the previous results. Furthermore, the explicit expressions of waiting times at the first node are given as a function of the capacity of the finite buffer and we are able to disclose a relationship of waiting times between under communication blocking and under manufacturing blocking. Some numerical examples are also given.

A Model for the Estimation of Delay Signalized Intersections (신호등 교차로에서의 지체예측에 관한 연구)

  • 이철기;이승환
    • Journal of Korean Society of Transportation
    • /
    • v.10 no.1
    • /
    • pp.41-54
    • /
    • 1992
  • The purpose of this thesis is to construct a model to estimate the delay that vehicles arriving randomly will be experienced at an isolated singalized intersection. To do this the following objectives are set in this study: (i) An what distance a random arrival pattern occurs after a platoon of vehicles are dis-charged from the stop line; (ii) A model which estimates the average delay per through-vehicle with respect to the de-gree of saturation; and (iii) The relation between the stepped delay and average approach delay per vehicle. The following are the findings of this study: (i) A random arrival pattern on the first second and third lanes occur 300,400 and 300m downstream from stop line rdspectively. A random arrival pattern on lane group occurs 500m downstream from the stop line ; (ii) A model for the estimation of approach delay has been developed in such a way that up to x=0.7 the delay increases linearly and beyond 0.7 the delay increases rapidly in a form of second order polynomial due to high degree of saturation : and (iii) Approach delay equals approximately 1.21 times of stopped delay.

  • PDF

A Study on the Static Correction for the First Arrival Travel-time of the Cross-well Seismic Data (시추공 탄성파 초동주시 기록의 정보정 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.146-151
    • /
    • 2011
  • A method to evaluate and to reduce the source- and receiver- consistent noise in a cross-well travel time data was proposed. These systematic noises, which can cause some serious effects on the result of a travel time tomography, can be considered as the source and receiver statics. The method evaluates the statics through a curve-fitting of the first arrival travel times in the common source and common receiver gathers. Feasibility study was conducted on a synthetic data which simulates the cross-well travel time tomography to detect a small scale tunnel in a uniform background medium. First arrival travel times at a given source and receiver points are computed by a raytracing method, and the source consistent- and receiver consistent noises are added to the record. In case of the added noise with rms amounting to 25% of the maximum expected anomalous travel time delays, it is confirmed that the method successfully extracted the noise at the 7th step of iteration.