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Abstract
The Markov modulated Brownian motion is a substantial generalization of the classical Brownian Motion.

On the other hand, the Markovian arrival process (MAP) is a point process whose family is dense for any stochas-
tic point process and is used to approximate complex stochastic counting processes. In this paper, we consider a
superposition of the Markov modulated Brownian motion (MMBM) and the Markovian arrival process of jumps
which are distributed as the bilateral ph-type distribution, the class of which is also dense in the space of distri-
bution functions defined on the whole real line. In the model, we assume that the inter-arrival times of the MAP
depend on the underlying Markov process of the MMBM. One of the subjects of this paper is introducing how to
obtain the first passage probabilities of the superposed process using a stochastic doubling algorithm designed for
getting the minimal solution of a nonsymmetric algebraic Riccatti equation. The other is to provide eigenvalue
and eigenvector results on the superposed process to make it possible to apply the GTH-like algorithm, which
improves the accuracy of the doubling algorithm.

Keywords: Markov modulated Brownian motion, Markovian arrival process, first passage time,
doubling algorithm, nonsymmetric algebraic Riccati equation, GTH-like algorithm

1. Introduction

This paper is concerned with the superposed process of the Markov modulated Brownian motion
(MMBM) and Markovian arrival process (MAP), and a technique to enhance the performance of an
algorithm for computation of the first passage probabilities of the superposed process.

The MMBM, a generalization of the Brownian motion, is a bivariate Markov process of which
the drift and diffusion parameters vary according to the states of a underlying Markov process. On
the other hand, the MAP is a point process whose jump epochs are also governed by an underlying
Markov process. Since the family of MAP is dense for any stochastic point process, it is used to
approximate complex stochastic counting processes. Concerning the sizes of jumps of the MAP, we
assume that they are mutually independent and distributed as the bilateral ph-type (BPH) distributions
with their parameters depending on the states of the underlying Markov processes of both the MMBM
and MAP. We note that the bilateral ph-type distribution, introduced by Ahn and Ramaswami (2005),
can be represented as a mixture of two independent ph-type distributions, and the class of bilateral
ph-type distributions is also dense in the space of distribution functions defined on the whole real line.

Then, the superposition of the MMBM and MAP becomes a generalized process that can be used
for modelling complex systems in numerous academic fields including queues, finance, and insurance
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risk theories. For example, of applications, see Belhaj (2010), Jiang and Pistorius (2008), Asmussen
(2003), and the references therein. We call this superposed process the generalized Markov modulated
Brownian motion and use G-MMBM for abbreviation. In relation to G-MMBM, we deal with two
main subjects in this paper. The first one is to provide Markovian representation of the G-MMBM
so that we can obtain the first passage probabilities of the G-MMBM using the approaches of Ahn
(2016), in which they show that the first passage probabilities can be achieved by using the minimal
non-negative solution of a nonsymmetric algebraic Riccati equation (NARE) of the form

AZ + ZB + ZCZ + D = 0. (1.1)

The other is to show eigenvalue and eigenvector results so that we can use the GTH-like algorithm
introduced by Alfa et al. (2001), which enhances the accuracy of the algorithms for computing the
minimal nonnegative solution of the NARE in relation to the first passage probabilities of the G-
MMBM.

The remainder of this paper is organized as follows. In Section 2, we introduce the G-MMBM and
also the relation between the first passage probabilities of the process and the minimal nonnegative
solution of a nonsymmetric algebraic Riccati equation. In Section 3, we provide parameter represen-
tation of the G-MMBM which can be obtained using embedding technique. The doubling algorithm
and eigenvalue and eigenvector results on the G-MMBM to be used for GTH-like algorithm are in-
troduced in Section 3. Finally, we illustrate the effects of the GTH-like algorithm by using numerical
examples.

2. Description of the G-MMBM and related NARE

The G-MMBM is the superposed process of an MMBM and an MAP. We note that the MMBM
consists of a modulating irreducible Markov process JB with a state space S (B) = S (B)

b ∪ S (B)
u ∪ S (B)

d ,
a drift row-vector µ(B) = (µ(B)

b µ
(B)
u µ

(B)
d ), and a diffusion row-vector σ(B) = (σ(B)

b 0 0); the MAP is
modulated by an irreducible Markov process JM with a state space S (M) = {1, . . . ,m} and its transition
and jump rates depend on JB. The resulting G-MMBM is a two-dimensional Markov process and use
(X, J) to denote the process, where we call X and J the level and the phase process of the G-MMBM,
respectively. Here, the phase process J is the superposed process of JB and JM of which the state space
S is represented as S = S b ∪ S u ∪ S d with S b = S (B)

b ⊗ S (M), S u = S (B)
u ⊗ S (M), and S d = S (B)

d ⊗ S (M).
Then the level process X can be represented as

X(t) = a +

∫ t

0
µJ(u)du +

∫ t

0
σJ(u)dB(u) +

∫ t

0
dM(u), (2.1)

where (i) when J(t) = (i, j) ∈ S , µ(i, j) = [µ(B)]i and σ(i, j) = [σ(B)]i; (ii) M is the jump process with the
jump epochs being either the transition epochs of J, or the arrival epochs of the compound Poisson
processes whose intensity depends on the state of J. Moreover, the sizes of the incurred jumps are
mutually independent and distributed as the BPH distribution of the form

G(dx) = β+eB+ x(−B+1)dx χ(x > 0) + β−e−B−x(−B−1)dx χ(x < 0), (2.2)

in which nonnegative probability vectors β+ and β− satisfy β+1 + β+1 = 1, and B+ and B− are sub-
stochastic matrices which have negative diagonal elements, nonnegative off-diagonal elements, and
non-positive row-sums; (iii) and B = {B(t), t ≥ 0} is a standard Brownian motion that is independent
of J and M.
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Figure 1: Illustration of how a sample path of (F, J) is transformed to a sample path of its embedded process
(F̃, J̃). Note that i1, i3 ∈ S b, i2 ∈ S u, i4 ∈ S d, k1, k2 ∈ S −, and k3 ∈ S +.

In connection with the state spaces S , we denote the drift and diffusion row vectors by µ = (µi, i ∈
S ) and σ = (σi, i ∈ S ), respectively, and we define the sub-vectors σk and µk as σk = (σi, i ∈ S k) and
µk = (µi, i ∈ S k) for k = b, u, d. In addition to the state space S , it is necessary to adopt jump-state
spaces S + and S − modulating bilateral ph-type jumps, details of which are to be given in Section 3.
For these state spaces, we define the drift and diffusion row vectors as µ+ = 1′+, µ− = 1′−, σ j+ = 0+,
and σ− = 0− with the prime denoting the transpose operator. Note that, for k ∈ {b, u, d,+,−}, we
use 0k, 1k, Ik, and 0k,l to denote the sk(the dimension of S k)-dimensional row vector of 0s, column
vector of 1s, sk-dimensional identity matrix, and sk × sl-dimensional zero matrix, respectively. We
also use I and 0 to denote the identity matrix and the zero matrix of appropriate dimension which can
be identified from the context. Throughout the paper, for a given vector v, we use the notation ∆v to
denote the diagonal matrix with the elements of v on its diagonal.

2.1. Representation of the G-MMBM through the embedding technique and completed
graph

Let (X̃, J̃) denote the embedded process of (X, J) to be obtained by using an embedding technique,
which replaces the positive and negative jumps in (X, J) with linear stretches having slopes +1 and
−1 respectively in X̃, and lets J̃ track the states (phases) in BPH jumps in addition to the states in J.
In Figure 1, we illustrate how a sample path of (X, J) is transformed to its corresponding sample path
of (X̃, J̃). Then, the embedded process (X̃, J̃) becomes an MMBM without a jump, in which its state
space S e, diffusion vector σe, and drift vector µe are respectively given as S e = S b∪S u∪S +∪S d∪S −,
σe = (σb 0u 0+ 0d 0−), and µe = (µb µu µ+ µd µ−). We denote by T the infinitesimal generator of J̃
and represent it in a partitioned form as

T =
(
Ti, j, i, j = b, u,+, d,−

)
with T+,− = 0 and T−,+ = 0, (2.3)

where Ti, j is a sub-matrix of T containing [T ]lm, the (l,m)th element of T with l ∈ S i and m ∈ S j. We
note that the restriction of T on S should be Q, and that (−[T ]ii)−1, i ∈ S , represents the mean dwelling
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Figure 2: (a) Level process X and phases of J. (b) Completed graph C and phases of J .

time of J in i until a jump or a transition to other states in S occurs, whereas (−[Q]ii)−1 is the mean
dwelling time of J in i until a transition of J to other states in S . We let πe = (πb πu π+ πd π−) be the
stationary probability vector of T satisfying πeT = 0 and πe1 = 1. Defining the average drift µ̃ of the
embedded process as µ̃ =

∑
i∈S e [πe]i[µe]i, we say that the G-MMBM is positively recurrent, transient,

and null recurrent when µ̃ < 0, > 0, and = 0, respectively. We describe the detailed constructions of
S e and T in Section 3.

All the information for analyzing the G-MMBM is contained in the parameter triple (T,µe,σe).
So, when we call the parameter of the G-MMBM, it indicates the parameter triple. With regard to the
level process X̃, it is represented as

X̃(t) = a +

∫ t

0
[µe]J̃(u)du +

∫ t

0
[σe]J̃(u)dB(u).

For description of G-MMBM, it is useful to introduce a terminology called the completed graph C
of the process and its phase process J (a, t) to be defined for (a, t) ∈ C . We note that the completed
graph C is a subset of the plane R2 containing (X(t), t) for all t and the line segment joining (X(t), t)
and (X(t−), t) for all discontinuity points t. The completed graph, introduced in Whitt (1980), is useful
for representing quantities in relation to a process with discontinuous sample paths. For more details,
refer to Whitt (1980) and Ahn (2016, 2017). We illustrate a G-MMBM, its completed graph, and the
phase process defined on the completed graph in Figure 2.

2.2. First passage time of the G-MMBM and a nonsymmetric algebraic Riccati equation

We define the first passage times of X to 0 as τ = inf{t > 0 : X(t) < 0}. In relation to τ, we define an
probability matrix f̂(a) such that its (i, j)th element, i, j ∈ S e, satisfies[

f̂(a)
]
i j

= P
[
J (0, τ) = j|J (a, 0) = i

]
, a ≥ 0.

Then, the (sb + sd + s−)-dimensional squared sub-matrix f̂bd−,bd−(a) = ([f̂(a)]i j; i, j ∈ S b ∪ S d ∪ S −)
has the matrix exponential form eHa, where H is a sub-stochastic matrix.

Concerning H, Ahn (2016) showed that it can be obtained by using the minimal solution of a
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non-symmetric algebraic Riccati equation of the form

AZ + ZB + ZCZ + D = 0, (2.4)

where, with definition of the following relevant matrices

Λ = diag{−[T ]ii, i ∈ S b},Σ = ∆σb ,D1 = Σ−2∆µb
, and D2 = Σ−1

(
2Λ + Σ−2∆2

µb

) 1
2 ,

the coefficient matrices satisfy

A =

(
D1−D2 2Σ−1Tb,u 2Σ−1Tb,+

0u,b ∆−1
µu

Tu,u ∆−1
µu

Tu,+

0+,b T+,u T+,+

)
, C =

 Σ−1 0b,u 0b,+

0d,b ∆−1
−µd

Td,u ∆−1
−µd

Td,+

0−,b T−,u 0−,+

 , (2.5)

B =

(
−D1−D2 0b,d 0b,−

∆−1
−µd

Td,b ∆−1
−µd

Td,d ∆−1
−µd

Td,−

T−,b T−,d T−,−

)
, D =

(
2Σ−1(Tb,b+Λ) 2Σ−1Tb,d 2Σ−1Tb,−

∆−1
µu

Tu,b ∆−1
µu

Tu,d ∆−1
µu

Tu,−

T+,b T+,d 0+,−

)
.

Furthermore, from the results of Section 2.1.2 of Bini et al. (2012), Liu and Xue (2012), and Theorem
3.1.1 and 3.1.2 of Ahn (2016), we can derive the following result:

Theorem 1. Let σ(·) denote the set of eigenvalues of a given squared matrix ·.
(a) The NARE (2.4) has a minimal nonnegative solution Z. Moreover, Z is the unique solution such
that σ(B + CZ) ⊂ C− ∪ {0} and σ(A + ZC) ⊂ C− ∪ {0}.
(b) Let Z be the minimal non-negative solution of the NARE (2.4). Then H satisfies the relation

H = B + CZ. (2.6)

�

3. Representation of the superposed process as a G-MMBM

We introduce how to represent the G-MMBM which is the superposed process of an MMBM and
Markovian arrival processes (MAP) with BPH-distributed jumps. Since the transition rates and jump
rates of the MAP are assumed to be dependent on the process JB modulating the MMBM, we denote
the MAP parameters by (ΓJB(t)

0 ,ΓJB(t)
1 ). We also assume that MAP jumps are mutually independent

and distributed as the BPH distribution of which the parameters depend on the state of the superposed
Markov process J. We note that the representation form of the G-MMBM depend on dependence
structures of the jumps on the Markov process J.

3.1. BPH jumps depending on only the Markov states before their corresponding jump
epochs

In this section, we assume that the jump sizes are mutually independent and distributed as the BPH
distribution, of which the parameters depend on the state of J just before their jump epochs. We begin
with simple examples for illustration.

Example 1. We consider the superposition of a two-state MMBM and two-state MAP, where

(i) S (B) = {1, 2}, Q(B) = (qi j), µ(B) = (µ1 µ2) and σ(B) = (σ1 σ2),

(ii) two-state MAP(ΓJB(t)
0 ,ΓJB(t)

1 ) with S (M) = {1, 2}, Γi
0 = (γi

0,kl; k, l ∈ S (M)) and Γi
1 = (γi

1,kl; k, l ∈
S (M)) for i ∈ S (B),
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(iii) an MAP jump occurring at the transition epoch of JM from k to l while JB stays in i ∈ S (B) is
assumed to be distributed as ph-type distribution of the form

βi
keBi

k x
(
−Bi

k1
)
χ(x > 0).

Then, the infinitesimal generator of the embedded process of the superposition can be represented as

q11+γ1
0;11 γ1

0;12 q12 0 (γ1
1;11+γ1

1;12)β1
1 0 0 0

γ1
0;21 q11+γ1

0;22 0 q12 0 (γ1
1;21+γ1

1;22)β1
2 0 0

q21 0 q22+γ2
0;11 γ2

0;12 0 0 (γ2
1;11+γ2

1;12)β2
1 0

0 q21 γ2
0;21 q22+γ2

0;22 0 0 0 (γ2
1;21+γ2

1;22)β2
2

(−B1
11)γ̄1

1;11 (−B1
11)γ̄1

1;12 0 0 B1
1 0 0 0

(−B1
21)γ̄1

1;21 (−B1
21)γ̄1

1;22 0 0 0 B1
2 0 0

0 0 (−B2
11)γ̄2

1;11 (−B2
11)γ̄2

1;12 0 0 B2
1 0

0 0 (−B2
21)γ̄2

1;21 (−B2
21)γ̄2

1;22 0 0 0 B2
2


where γ̄i

1;kl = γi
1;kl/(γ

i
1;k1 + γi

1;k2) for i ∈ S (B) and k, l ∈ S (M). The drift and diffusion vectors are given
as (µ1 µ1 µ2 µ2 1′ 1′ 1′ 1′) and (σ1 σ1 σ2 σ2 0 0 0 0), respectively. �

Example 2. We consider the special case of Example 3.1. In addition to the assumption (i) and
(ii) of Example 3.1, we assume that (ii)′ γi

1:k`/
∑
`∈S (M) γi

1:k` = γ̄i
1:` for all k ∈ S (M); (iii) an MAP

jump occurring at the transition epoch of JM from k to l while JB stays in i ∈ S (B) is assumed to be
distributed as BPH distribution of the form

βi−
k eBi− |x|

(
−Bi−1

)
χ(x < 0) + βi+

k eBi+ x
(
−Bi+1

)
χ(x > 0).

Then, the drift and diffusion vectors are given as (µ1 µ1 µ2 µ2 1′ 1′ −1′ −1′) and (σ1 σ1 σ2 σ2 0 0 0 0),
respectively, and the infinitesimal generator of the embedded process can be represented as

q11+γ1
0;11 γ1

0;12 q12 0 (γ1
1;11+γ1

1;12)β1+
1 0 (γ1

1;21+γ1
1;22)β1−

1 0
γ1

0;21 q11+γ1
0;22 0 q12 (γ1

1;21+γ1
1;22)β1+

2 0 (γ1
1;21+γ1

1;22)β1−
2 0

q21 0 q22+γ2
0;11 γ2

0;12 0 (γ2
1;11+γ2

1;12)β2+
1 0 (γ2

1;11+γ2
1;12)β2−

1

0 q21 γ2
0;21 q22+γ2

0;22 0 (γ2
1;11+γ2

1;12)β2+
2 0 (γ2

1;21+γ2
1;22)β2−

2

(−B1+1)γ̄1
1;1 (−B1+1)γ̄1

1;2 0 0 B1+ 0 0 0
0 0 (−B2+1)γ̄2

1;1 (−B2+1)γ̄2
1;2 0 B2+ 0 0

(−B1−1)γ̄1
1;1 (−B1−1)γ̄1

1;2 0 0 0 0 B1− 0
0 0 (−B2−1)γ̄2

1;1 (−B2−1)γ̄2
1;2 0 0 0 B2−


�

Example 3. We consider the superposition of a two-state MMBM and inhomogeneous Poisson
process, where,

(i) S (B) = {1, 2}, Q(B) = (qi j), µ(B) = (µ1 µ2) and σ(B) = (σ1 σ2),

(ii) Poisson process with intensity γ(JB(t)),

(iii) the size of a jump which occurs while JB stays in i ∈ S (B) is assumed to be distributed as BPH
distribution of the form

βi+eBi+ x
(
−Bi+1

)
χ(x > 0) + βi−eBi−x

(
−Bi−1

)
χ(x < 0).
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Then, the infinitesimal generator of the embedded process of the superposition can be represented as
q11−γ

(1) q12 γ(1)β1+ 0 γ(1)β1− 0
q21 q22−γ

(2) 0 γ(2)β2+ 0 γ(2)β2−

(−B1+1) 0 B1+ 0 0 0
0 (−B2+1) 0 B2+ 0 0

(−B1−1) 0 0 0 B1− 0
0 (−B2−1) 0 0 0 B2−

 .
The drift and diffusion vectors of the embedded process are given as (µ1 µ2 1′ − 1′) and (σ1 σ2 0 0),
respectively. �

Now, we consider the general case of the superposition. For the MAP jump occurring when
J = (i, `), we let (βi+

` , B
i+
` , β

i−
` , B

i−
` ) denote the parameters of the BPH distribution. If we denote by

S i+
` and S i−

` the state spaces corresponding to Bi+
` and Bi−

` , respectively, then S + = ∪i∈S (B),`∈S (M) S i+
` and

S − = ∪i∈S (B),`∈S (M) S i−
` . The drift and diffusion vectors µe = (µb µu µd 1′j+ 1′j− ) and σe = (σb 0 0 0 0)

satisfy µb = µ(B)
b ⊗ 1′m, µu = µ(B)

u ⊗ 1′m, µd = µ(B)
d ⊗ 1′m, and σb = σ(B)

b ⊗ 1′m. Moreover, the infinitesimal
generator T of the embedded process given in the following partitioned form

T =


Tbb Tbu Tbd Tb+ Tb−

Tub Tuu Tud Tu+ Tu−

Tdb Tdu Tdd Td+ Td−

T+b T+u T+d T++ 0
T−b T−u T−d 0 T−−

 , (3.1)

in which, with χ(·) denoting the indicator function and matrices ak`
i j for k, ` ∈ {b, u, d,+,−} and i ∈

S k, j ∈ S ` being defined as

akk
i j = qi jIm + χ(i = j)Γi

0 and ak`
i j = qi jIm for k , `,

the submatrices satisfy that

Tbb =
(
abb

i j , i, j ∈ S b

)
, Tbu =

(
abu

i j , i ∈ S b, j ∈ S u

)
, Tbd =

(
abd

i j , i ∈ S b, j ∈ S d

)
,

Tuu =
(
auu

i j , i, j ∈ S u

)
, Tub =

(
aub

i j , i ∈ S u, j ∈ S b

)
, Tud =

(
auu

i j , i ∈ S u, j ∈ S d

)
,

Tdd =
(
add

i j , i, j ∈ S d

)
, Tdb =

(
adb

i j , i ∈ S d, j ∈ S b

)
, Tdu =

(
adu

i j , i ∈ S d, j ∈ S u

)
,

with γi
1;k· =

∑
l∈S M

γi
1;kl for i ∈ S and matrices bk+

i and bk−
i for k ∈ {b, u, d}, i ∈ S k being defined as

bk+
i = diag

{
γi

1; j·β
i+
j , j ∈ S (M)

}
and bk−

i = diag
{
γi

1; j·β
i−
j , j ∈ S (M)

}
,

Tb+ =
(
diag

{
bb+

i , i ∈ S b

}
0 0

)
,Tu+ =

(
0 diag

{
bu+

i , i ∈ S u
}

0
)
,Td+ =

(
0 0 diag

{
bd+

i , i ∈ S d

})
, (3.2)

Tb− =
(
diag

{
bb−

i , i ∈ S b

}
0 0

)
,Tu− =

(
0 diag

{
bu−

i , i ∈ S u
}

0
)
,Td− =

(
0 0 diag

{
bd−

i , i ∈ S d

})
,

with matrices c+`
i and c−`i for ` ∈ {b, u, d}, i ∈ S ` being defined as

c+`
i = diag

{(
−Bi+

j 1
) (
γi

1; j·

)−1
, j ∈ S (M)

}
Γi

1 and c−`i = diag
{(
−Bi−

j 1
) (
γi

1; j·

)−1
, j ∈ S (M)

}
Γi

1,
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T+b =


diag

{
c+b

i , i ∈ S b

}
0
0

 ,T+u =


0

diag
{
c+u

i , i ∈ S u

}
0

 ,T+d =


0
0

diag
{
c+d

i , i ∈ S d

}
 , (3.3)

T−b =


diag

{
c−b

i , i ∈ S b

}
0
0

 ,T−u =


0

diag
{
c−u

i , i ∈ S u

}
0

 ,T−d =


0
0

diag
{
c−d

i , i ∈ S d

}
 ,

and with d++
i = diag{Bi+

k , k ∈ S (M)} and d−−i = diag{Bi−
k , k ∈ S (M)} for i ∈ S ,

T++ =

 diag{d++
i , i ∈ S b} 0 0
0 diag{d++

i , i ∈ S u} 0
0 0 diag{d++

i , i ∈ S d}

 , (3.4)

T−− =

 diag{d−−i , i ∈ S b} 0 0
0 diag{d−−i , i ∈ S u} 0
0 0 diag{d−−i , i ∈ S d}

 .
3.2. BPH jumps depending on both the Markov states before and after their

corresponding jump epochs

In this section, we consider the superposition in which the MAP jumps depend on the states of J both
before and after the jump epoch of the process. We also take a simple example for illustration of the
structure of the resulting embedded process.

Example 4. Consider the superposition of a two-state MMBM and two-state MAP, where,

(i) S (B) = {1, 2}, Q(B) = (qi j), µ(B) = (µ1 µ2) and σ(B) = (σ1 σ2),

(ii) two-state MAP(ΓJB(t)
0 ,ΓJB(t)

1 ) with S (M) = {1, 2}, Γi
0 = (γi

0,kl; k, l ∈ S (M)) and Γi
0 = (γi

0,kl; k, l ∈
S (M)) for i ∈ S (B),

(iii) an MAP jump occurring at the transition epoch of J from (i, k) to (i, `) is assumed to be dis-
tributed as ph-type distribution of the form

βi
k`e

Bi
k`x

(
−Bi

k`1
)
χ(x > 0).

Then, the infinitesimal generator of the embedded process of the superposition can be represented as

q11+γ1
0;11 γ1

0;12 q12 0 γ1
1;11β

1
11 γ1

1;12β
1
12 0 0 0 0 0 0

γ1
0;21 q11+γ1

0;22 0 q12 0 0 γ1
1;21β

1
21 γ1

1;22β
1
22 0 0 0 0

q21 0 q22+γ2
0;11 γ2

0;12 0 0 0 0 γ2
1;11β

2
11 γ2

1;12β
2
12 0 0

0 q21 γ2
0;21 q22+γ2

0;22 0 0 0 0 0 0 γ2
1;21β

2
21 γ2

1;22β
2
22

−B1
111 0 0 0 B1

11 0 0 0 0 0 0 0
0 −B1

121 0 0 0 B1
12 0 0 0 0 0 0

−B1
211 0 0 00 0 B1

21 0 0 0 0 0
0 −B1

221 0 0 0 0 B1
22 0 0 0 0

0 0 −B2
111 0 0 0 0 0 B2

11 0 0 0
0 0 0 −B2

121 0 0 0 0 0 B2
12 0 0

0 0 −B2
211 0 0 0 0 0 0 0 B2

21 0
0 0 0 −B2

221 0 0 0 0 0 0 0 B2
22
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The drift and diffusion vectors are given as (µ1 µ1 µ2 µ2 1′ 1′ 1′ 1′ 1′ 1′ 1′ 1′) and (σ1 σ1 σ2 σ2 0 0 0 0 0 0 0 0),
respectively. �

Now, we consider the general case of the superposition. For the MAP jump which occurs at
the transition epoch of J from (i, j) to (i, k), we let (βi+

jk , B
i+
jk , β

i−
jk , B

i−
jk) be the parameters of the BPH

distribution. If we denote by S i+
jk and S i−

jk the state space corresponding to Bi+
jk and Bi−

jk , respectively,
then S + = ∪i∈S (B) ∪ j∈S (M) ∪k∈S (M) S i+

jk , and S − = ∪i∈S (B) ∪ j∈S (M) ∪k∈S (M) S i−
jk . The drift and diffusion vectors

µe = (µb µu µd 1′+ 1′−) and σe = (σb 0 0 0 0) satisfy µb = µ(B)
b ⊗ 1′m, µu = µ(B)

u ⊗ 1′m, µd = µ(B)
d ⊗ 1′m,

and σb = σ(B)
b ⊗ 1′m. Moreover, the infinitesimal generator T of the embedded process given in the

following partitioned form 
Tbb Tbu Tbd Tb+ Tb−

Tub Tuu Tud Tu+ Tu−

Tdb Tdu Tdd Td+ Td−

T+b T+u T+d T++ 0
T−b T−u T−d 0 T−−

 , (3.5)

in which, with matrices ak`
i j for k, ` ∈ {b, u, d,+,−} and i ∈ S k, j ∈ S ` being defined as

akk
i j = qi jIm + χ(i = j)Γi

0 and ak`
i j = qi jIm for k , `,

the submatrices satisfy that,

Tbb =
(
abb

i j , i, j ∈ S b

)
, Tbu =

(
abu

i j , i ∈ S b, j ∈ S u

)
, Tbd =

(
abd

i j , i ∈ S b, j ∈ S d

)
, (3.6)

Tuu =
(
auu

i j , i, j ∈ S u

)
, Tub =

(
aub

i j , i ∈ S u, j ∈ S b

)
, Tud =

(
aud

i j , i ∈ S u, j ∈ S d

)
,

Tdd =
(
add

i j , i, j ∈ S d

)
, Tdb =

(
adb

i j , i ∈ S d, j ∈ S b

)
, Tdu =

(
adu

i j , i ∈ S d, j ∈ S u

)
,

with matrices b`+i and b`−i for ` ∈ {b, u, d}, i ∈ S ` being defined as

b`+i = b`+i = diag
{(
γi

1;k1β
i+
k1 , . . . , γ

i
1;kmβ

i+
km

)
, k ∈ S M

}
and b`−i = diag

{(
γi

1;k1β
i−
k1 , . . . , γ

i
1;kmβ

i−
km

)
, k ∈ S M

}
,

Tb+ =
(
diag

{
bb+

i , i ∈ S b

}
0 0

)
,Tu+ =

(
0 diag

{
bu+

i , i ∈ S u
}

0
)
,Td+ =

(
0 0 diag

{
bd+

i , i ∈ S d

})
, (3.7)

Tb− =
(
diag

{
bb−

i , i ∈ S b

}
0 0

)
,Tu− =

(
0 diag

{
bu−

i , i ∈ S u
}

0
)
,Td− =

(
0 0 diag

{
bd−

i , i ∈ S d

})
,

with matrices c+`
i and c+`

i for ` ∈ {b, u, d}, i ∈ S ` being defined as

c+`
i =


diag

{
−Bi+

1,k1, k ∈ S (M)
}

...

diag
{
−Bi+

m,k1, k ∈ S (M)
}

 and c−`i =


diag

{
−Bi−

1,k1, k ∈ S (M)
}

...

diag
{
−Bi−

m,k1, k ∈ S (M)
}

 ,

T+b =


diag

{
c+b

i , i ∈ S b

}
0
0

 ,T+u =


0

diag
{
c+u

i , i ∈ S u

}
0

 ,T+d =


0
0

diag
{
c+d

i,i , i ∈ S d

}
 , (3.8)

T−b =


diag

{
c−b

i , i ∈ S b

}
0
0

 ,T−u =


0

diag
{
c−u

i , i ∈ S u

}
0

 ,T−d =


0
0

diag
{
c−d

i , i ∈ S d

}
 ,
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and with d++
i = diag{diag{Bi+

k,l, l ∈ S (M)}, k ∈ S (M)} and d−−i = diag{diag{Bi−
k,l, l ∈ S (M)}, k ∈ S (M)} for

i ∈ S b ∪ S u ∪ S d,

T++ =

 diag{d++
i , i ∈ S b} 0 0
0 diag{d++

i , i ∈ S u} 0
0 0 diag{d++

i , i ∈ S d}

 , (3.9)

T−− =

 diag{d−−i , i ∈ S b} 0 0
0 diag{d−−i , i ∈ S u} 0
0 0 diag{d−−i , i ∈ S d}

 .
4. The structure-preserving doubling algorithm and GTH-like algorithm

We first introduce some relevant definitions and notations. For any matrices A, B ∈ Rm×n, we write
A ≥ B(A > B) if [A]i j ≥ [A]i j([A]i j > [B]i j for all i, j, where [A]i j denotes the (i, j)th element of
A. A real square matrix A is called a Z-matrix if all its off-diagonal elements are non-positive. Any
Z-matrix A can be written as sI−B with B ≥ 0. A Z-matrix A is called an M-matrix if s ≥ ρ(B), where
ρ(·) is the spectral radius; it is called a singular M-matrix if s = ρ(B) and a non-singular M-matrix if
s > ρ(B).

4.1. Structure-preserving doubling algorithm

We recall the parameter triple (T,µe,σe) of the G-MMBM given in the previous section and the
stationary probability vector πe of the infinitesimal generator. Then the first passage probability of
the G-MMBM can be obtained using the minimal solution of the NARE AZ + ZB + ZCZ + D = 0
given in (2.4) and (2.5) as mentioned in Section 2.2. In connection with the NARE (2.4), we define
an M-matrix M as

M =

(
−B −C
−D −A

)
, (4.1)

which is irreducible by the irreducibility of JB and JM . Moreover, M is a singular matrix.
To get the nonnegative minimal solution of the NARE, we can use the structure-preserving dou-

bling algorithm (SDA) presented in Guo et al. (2006), which is as follow,

Structure-preserving doubling (SDA) algorithm for an NARE AZ + ZB + ZCZ + D = 0

Step 1. Choose γ ≥ max{−[A]ii,−[B]ii, i ∈ S } and set(
E0 G0
H0 F0

)
=

(
γI − B −C
−D γI − A

)−1 (
γI + B C
D γI + A

)
Step 2. Ek+1 = Ek(I −GkHk)−1Ek; Fk+1 = Fk(I − HkGk)−1Fk,

Gk+1 = Gk + Ek(I −GkHk)−1GkFk; Hk+1 = Hk + Fk(I − HkGk)−1HkEk,

Step 3. Z = H∞,

The convergence results of the SDA when M is an irreducible M-matrix is given in the following
theorem, which can be found in Theorem 3.1 and 3.2 of Wang et al. (2012) and Theorem 3.1 of Xue
and Li (2017). For the theorem, we define the Cayley transform of R = −B − CX and S = −A − DY
such that

Rγ = (R + γI)−1(R − γI) and S γ = (S + γI)−1(S − γI). (4.2)
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Theorem 2. Note that {Ek}, {Gk}, {Hk}, and {Fk} denote the matrices in the kth iteration of the SDA.
(a) For all k ≥ 0, the matrices Ek, Gk, Hk, and Fk are non-negative. Moreover, for all k ≥ 0, I −GkHk

and I − HkGk are non-singular M-matrices.
(b) In the positive recurrent case, then ρ(Rγ) = 1 and ρ(S γ) < 1. Furthermore, {Hk} converges to X
quadratically with,

lim sup
k→∞

2k√
||Hk − X|| ≤ ρ(S γ),

{Fk} converges to 0 quadratically with lim supk→∞
2k√
||Fk || ≤ ρ(S γ), and {Ek} is bounded. The notation

||A|| denotes the maximum of the absolute values of the elements in a Matrix A.
(c) In the transient case, then ρ(Rγ) < 1 and ρ(S γ) = 1. Furthermore, {Hk} converges to X quadrati-
cally with

lim sup
k→∞

2k√
||Hk − X|| ≤ ρ(Rγ),

{Ek} converges to 0 quadratically with lim supk→∞
2k√
||Ek || ≤ ρ(Rγ), and {Fk} is bounded.

(d) In the null recurrent case, then ρ(Rγ) = 1 and ρ(S γ) = 1. In this case, {Hk} converges to X and
{Ek}, {Fk} are bounded. �

As we can see in SDA algorithm, the initialization phase and the iteration kernel of the SDA in-
volve inverting non-singular M-matrices. In particular, in the null recurrent case, the M-matrices, al-
though non-singular, move towards singular M-matrices at convergence. These inversions are causes
of concerns on entry-wise relative accuracy of the computed minimal nonnegative solution. Fortu-
nately, a non-singular M-matrices can be inverted by the GTH-like algorithm of Alfa et al. (2001)
to almost full entry-wise relative accuracy, which enhances the entry-wise relative accuracy of the
computed minimal nonnegative solution.

4.2. GTH-like algorithm

The GTH-like algorithm, proposed by Alfa et al. (2001), is used for solving linear systems Ax = b
when A is an M-matrix satisfying Av = c with v > 0 and c ≥ 0. It is a subtraction-free algorithm
and compute the inverse of A with relative errors in the magnitude of the machine precision. For the
details on the algorithm, refer to (2001). When it holds that Av = c with v > 0 and c ≥ 0, we say that
the triplet representation of A is available and represent as A = (NA, v, c) with NA = diag(A) − A.

Proposition 1. Recall that Λ = diag{−[Tb,b]i,i, i ∈ S b}. Then, the left and right eigenvectors u and
v corresponding to the eigenvalue 0 of M are given as

u :=
(

u1
u2

)
=



 (D1 + D2)−1Λπ′b
∆−µd
π′d
π′−


 0.5Σπ′b

∆µu
π′u
π′+




and v :=

(
v1
v2

)
=



 1b

1d

1−


 (D1 + D2)Σ1b

1u

1+




, (4.3)

which are unique up to a scalar multiple. �
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Proof: We can prove by showing that u′M = 0 and Mv = 0. Recall that

A =

(
D1−D2 2Σ−1Tb,u 2Σ−1Tb,+

0u,b ∆−1
µu

Tu,u ∆−1
µu

Tu,+

0+,b T+,u T+,+

)
, C =

 Σ−1 0b,u 0b,+

0d,b ∆−1
−µd

Td,u ∆−1
−µd

Td,+

0−,b T−,u 0−,+

 ,
B =

(
−D1−D2 0b,d 0b,−

∆−1
−µd

Td,b ∆−1
−µd

Td,d ∆−1
−µd

Td,−

T−,b T−,d T−,−

)
, D =

(
2Σ−1(Tb,b+Λ) 2Σ−1Tb,d 2Σ−1Tb,−

∆−1
µu

Tu,b ∆−1
µu

Tu,d ∆−1
µu

Tu,−

T+,b T+,d 0+,−

)
.

Note that u′M = (−u′1B − u′2D − u′1C − u′2A). If we temporarily let −u′1B − u′2D = (zb zd z−),
then

zb = πbΛ(D1 + D2)−1(D1 + D2) − πdTd,b − π−T−,b − πb(0.5Σ)
(
2Σ−1

)
(Tb,b + Λ) − πuTu,b − π+T+,b

= −πbTb,b − πuTu,b − π+T+,b − πdTd,b − π−T−,b = 0.

Similarly, we can show that

zd = −πbTb,d − πuTu,d − π+T+,d − πdTd,d − π−T−,d = 0,
z− = −πbTb,− − πuTu,− − π+T+,− − πdTd,− − π−T−,− = 0.

If we also temporarily let −u′1C − u′2A = (zb zu z+), then

zb = −πbΛ(D1 + D2)−1Σ−1 − πb(0.5Σ) (D1 − D2)

= −πb(D1 + D2)−1
[
ΛΣ−1 + 0.5Σ

(
D2

1 − D2
2

)]
= −πb(D1 + D2)−1

[
ΛΣ−1 − Σ−1Λ

]
= 0.

Note that the matrices D1, D2, Σ, and Λ are all diagonal. We can also show that

zu = −πbTb,u − πuTu,u − π+T+,u − πdTd,u − π−T−,u = 0,
z+ = −πbTb,+ − πuTu,+ − π+T+,+ − πdTd,+ − π−T−,+ = 0.

We left the proof of Mv = 0 to the reader, which is arithmetic. �

By examining the iteration kernel of the SDA algorithm, we see the inverse matrices I − HkGk

and I − GkHk, which we can apply the GTH-like algorithm provided that their triplet representation
are available. In general, the triplet representation are not available. However, the spectral result in
Proposition 1 make it possible, which is shown in the following proposition.

Proposition 2. Recall the matrices Ek,Gk,Hk, Fk in the kth iteration of SDA algorithm. Then, it
satisfies that, for all k ≥ 0,

(I − HkGk)v2 = Fkv2 + HkEkv1 and (I −GkHk)v1 = Ekv1 + GkFkv2,

where v = (v′1 v′2)′ is the right eigenvector corresponding to 0 of the matrix M of which the form is
given in (4.3).

Proof: Since Mv =
(
−B −C
−D −A

)
v = 0 from Proposition 1 and M is an M-matrix, the matrix

(
γI−B −C
−D γI−A

)
is non-singular M-matrix. Moreover, since(

γI + B C
D γI + A

)
v = γv +

(
B C
D A

)
v = γv −

(
B C
D A

)
v =

(
γI − B −C
−D γI − A

)
v,
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it holds that (
E0 G0
H0 F0

)
v =

(
γI − B −C
−D γI − A

)−1 (
γI + B C
D γI + A

)
v = v.

We can also show that (
Ek Gk

Hk Fk

)
v = v

for all k > 0 by induction using the same way in Theorem 3.2 of Xue and Li (2017), which yields that
for all k ≥ 0 (

I −Gk

−Hk I

)
v =

(
Ek 0
0 Fk

)
v.

Multiplying (I Gk) to the right of both sides, we can obtain the result of (I −GkHk). Similarly, we can
get the result of (I − HkGk) by using the equation(

Fk Hk

Gk Ek

) (
v2
v1

)
=

(
v2
v1

)
.

�

Since I − HkGk and I −GkHk are non-singular M-matrices for each k ≥ 0, Proposition 2 makes it
possible to compute their inverses using the GTH-like algorithm.

5. Numerical study

For the numerical study, we used MATLAB (R2019a) running on a Windows 10 64 bit in DELL
Server with dual processor Intel (R) Xeon (R) Gold 6126 CPU @ 2.60GHz and 256GB of main
memory.

To see the effect of GTH-like algorithm, we compare the original SDA algorithm(A1) with the
subtraction-free SDA(A2) which uses the GTH-like algorithm. For the study, we take one of the
examples in Example 3.1, of which S (B) = {1}, S (M) = {1, . . . , n}, Γ1

0 = −(15/8)In, Γ1
1 = −(15/8n)Jn,

β1−
k = β1−

k = (1/2n)1′n for all k ∈ S (M), B1−
k = B1+

k = −2In for all k ∈ S (M), µb = (3/2)1′n, and
σb =

√
7/41′n. Then, the infinitesimal generator of the embedded process of the superposition is

represented as

T =

 Tb,b Tb,+ Tb,−

T+,b T+,+ T+,−

T−,b T−,+ T−,−

 =

 −
15
8 In

15
16n Jn

15
16n Jn

2
n Jn −2In 0n×n
2
n Jn 0n×n −2In

 ,
where Jn denotes the n-dimensional square matrix of 1’s.

We note that the average drift value of (F, J), average value of aggregated amount of fluid per
unit time, is (3/2) for all n. To investigate the effects of the average drift value, we consider another
parameter m = (2/3) × µ̄m, which makes the average drift value of (dm × F, J) be µ̄m. For the MMBM
(dm × F, J) with τm and Hm being its first passage time to 0 and the H-matrix, it holds that for all m
and x

P[τ < ∞|J(0) = 1, F(0) = x] = P[τm < ∞|J(0) = 1, dmF(0) = dmx]

= e1e(dm x)Hm 1 =
3
4

e−x +
1
4

e−3x, (5.1)
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Table 1: Comparison of error values

(µ̄, n) (0, 10) (0,100) (0, 500) (10−5, 10) (10−5,100) (10−5, 500)
A1 NaN 4.98E–08 NaN 2.84E-16 1.70E–15 5.07E–16
A2 1.55E-15 1.71E–14 1.78E–14 1.94E–16 1.43E–15 9.71E–17

(µ̄, n) (10−4, 10) (10−4,100) (10−4, 500) (5, 10) (5,100) (5, 500)
A1 2.84E–16 1.69E-15 5.27E–16 2.08E–16 1.71E–15 5.69E–16
A2 2.08E–16 1.51E-15 4.84E–17 1.32E–16 1.54E–15 6.94E–17

where e1 is a unit vector with appropriate dimension, in which its first element is 1 and the others are
all 0. For the exact function of x, we refer to Example 6.1 of Asmussen (1995).

We choose the values of dm so that the average drift value µ̄m of the MMBM’s (dm × F, J) is to
be 0.00001, 0.0001, 5, and then compute P[τm < ∞|J(0) = 1, dmF(0) = 3dm] to compare with the
exact value in (5.1). Note that the diffusion and drift vector of (dm × F, J) are given as (dmσb 0 0)
and (dmµb 1′ − 1′). To check our computations even more, we consider the MMBM (F, J) for
which S = {1, . . . , 3n} with n = 10, 100, 500. For the case of µ̄ = 0, we used the MMBM (F0, J),
of which all the parameters are same as (F, J) except µb being given as 0n×1. We compute P[τ0 <
∞|J(0) = 1, F0(0) = 3] = e1e3H0 1, which is equal to 1. Here, τ0 and H0 denotes the first passage time
to 0 and the H-matrix of (F0, J). The numerical results are presented in Tables 1. From the table,
we can observe that the GTH-like algorithm makes the doubling algorithm more stable and accurate,
especially when the G-MMBM is critical, that is, the average value of drift is 0.

6. Concluding remarks

In this paper, we introduce how to parameterize the superposition of the MMBM and MAP with bi-
lateral ph-type distributed jumps and also the non-symmetric algebraic Riccati equation to be used to
compute the first passage probability of the superposed process. We note that the coefficient matrices
of the equation can be obtained from the parametrization. Furthermore, we provide the spectral results
which makes it possible to apply the GTH-like algorithm to a structure-preserving doubling algorithm
for solving the equation. Through a numerical study, we have shown that using the GTH-like algo-
rithm enhances the performance of the structure-preserving algorithm and makes it remarkably more
stable and accurate especially when the superposed process is in the critical case.
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