• Title/Summary/Keyword: fire-resistant steel

Search Result 58, Processing Time 0.022 seconds

Study on the Design Automation of Steel House Shop drawing (스틸하우스 설계 자동화의 필요성과 적용방법에 관한 연구)

  • Won, Wan-Youn;Park, Hyeon-Soo
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2006.05a
    • /
    • pp.103-106
    • /
    • 2006
  • This study proposes a method of generating steel house shop drawing in an automated design method, reducing construction manpower and period. With one hour fire-resistant approval code, reflecting work ability and efficiency, steel-framed house market is expected to extend from one or two story house to multi-purpose facilities up to four story height. More models have been constructed in this system than the first appearance of fire-resistant approval in Korea in 1997. Also, cost estimation of components such as frame walls, roof trusses and floors is obtained with shop drawings. Also, the lack of suppliers of steel framed house shop drawing and unstandardized drawing method get constructors have difficulty in understanding its design. In steel framed house industry, shop drawings are essential part in building and constructing framework and they have major effects on construction deadlines and expenses. By exploring method of shop drawing automation, this study aims to optimize work flow with a standardized drawing method. The proposed system can be applied to manufacturing automation in domestic industry of factory-built panelizing method in the near future.

  • PDF

The First Performance-based Structural Fire Design for Office Building in Korea

  • Min Jae Park
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.235-239
    • /
    • 2023
  • In this study, the fire resistance performance of the concrete-filled steel tube (CFT) columns and thin steel-plate composite (TSC) beams installed at a 20-story office building were designed using a performance-based structural fire design. Because of the lack of any specific provisions in the building code and guidelines for structural engineers about the performance-based approach, the only prescriptive approach has been selected for designing fire-resistant structures in Korea. To evaluate the fire resistance performance of the CFT columns and TSC beams, finite element analysis verified by the experimental results studied by several researchers was conducted with ABAQUS. From the fire scenario, the temperature distributions of the CFT columns and TSC beams were found via finite element analysis and the behaviors of the CFT columns and TSC beams were investigated in the structural field based on the temperature distribution.

Properties of Intumescence Alkali Silicates for Building Fire-Resistant (건축용 내화 재료로서의 포비성 알칼리 규산염의 특성에 관한 연구)

  • Kang, Hyun Ju;Kang, Seung Min;Song, Myong Shin;Kim, Young Sik;Park, Jong Hun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.416-422
    • /
    • 2009
  • The buildings constructed with steel structure are coated with certified fire resistive material to resist from fire. All the building materials lose their initial performances as time passes by, so they need some maintenance. The Sprayed Fire Resistive Material (SFRM) also loses its performance and this performance loss of the SFRM is very important because fire resistance of buildings depends on SFRM. So this study was aimed to synthesis of alkali-silicates for SFRM and to evaluate the effect of alkali-silicates, K-silicates, Na-silicates and Li-silicates, by exchange of mole ratios as basic factors, tested solubility, intumescence ratios, thermal analysis, powder X-ray diffraction, fire-resistant and heat-resistant.

Analysis of Structural and Thermal Parameters for Evaluating Fire Resistance of Steel Beams (철골보의 내화시간 평가를 위한 구조 및 열적 변수해석)

  • Park, Han Na;Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.609-618
    • /
    • 2009
  • This paper proposes a versatile formula which can be used to evaluate the fire resistant time of steel beams under various design conditions. Towards this end, the key parameters which affect the fire performance of steel beams were first determined through thermo-mechanical considerations, and classified into two groups: structural parameters and thermal parameters. Then the degree of influence of each parameter on the fire performance was investigated through a fully coupled thermo-mechanical analysis up to the occurrence of run-away deflection. The accuracy of the numerical model used was verified using an available full-scale fire test before conducting an extensive parametric analysis. Multiple linear regression analysis was performed to obtain the formula which can be used to predict the fire resistance time of steel beams under various design conditions. The statistical analysis showed that the proposed formula is very robust. The application of the formula in practical fire design under the current code was illustrated in detail. The economy and other advantages of the proposed formula were clearly shown.

Development of Light-weight Fire Protection Materials Using Fly Ash and Light-weight Aggregate (플라이애시 및 경량골재를 활용한 경량 내화성 마감재료 개발)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.95-102
    • /
    • 2012
  • The serious issue of tall building is to ensure the fire resistance of high strength concrete. Therefore, Solving methods are required to control the explosive spalling. The fire resistant finishing method is installed by applying a fire resistant material as a light-weight material to structural steel and concrete surface. This method can reduce the temperature increase of the reinforcement embedded in structural steel and concrete at high temperature due to the installation thickness control. This study is interested in identifying the effectiveness of light-weight fire protection material compounds including the inorganic admixture such as fly ash, meta-kaolin and light-weight aggregate as the fire resistant finishing materials through the analysis of fire resistance and components properties at high temperature. Also, this paper is concerned with change in microstructure and dehydration of the light-weight fire protection materials at high temperatures. The testing methods of fire protection materials in high temperature properties are make use of SEM and XRD. The study results show that the light-weight fire resistant finishing material composed of fly ash, meta-kaolin and light-weight aggregate has the thermal stability of the slight decrease of compressive strength at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate. Developed light-weight fire protection materials showed good stability in high Temperatures. Thus, the results indicate that it is possible to fireproof panels, fire protection of materials.

  • PDF

A Study on the Prediction of Residual Strength of Concrete Filled Steel Tube Column without Fire Protective Coating by Unstressed Heating (비재하 가열에 의한 무내화피복 CFT 기둥의 잔존내력 예측에 관한 연구)

  • Kim, Gyu-Yong;Lee, Hyoung-Jun;Lee, Tae-Gyu;Kim, Young-Sun;Kang, Sun-Jong
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.31-39
    • /
    • 2009
  • Recently, fire resistance in high-rise building is becoming major problem socially. So it is need of hour to study on fire resistance in buildings. This study estimates fire resistance performance to utilized CFT (Concrete filled steel tube, below CFT) column in the high structure. But it is difficult quantitative evaluation about fire resistant performance of CFT. Therefore, this study made CFT specimen that determine the factor which is strength of concrete and then CFT column was exposed to heating controlled as closely as possible the ISO-834 standard fire curve. Also, tried to analyze internal temperature through nonlinear transient heat flow analysis. And, presumed extant compressive strength on the basis of this.

Experimental evaluation of fire protection measures for the segment joint of an immersed tunnel (침매터널 세그먼트조인트의 내화 대책에 대한 실험적 평가)

  • Choi, Soon-Wook;Chang, Soo-Ho;Kim, Heung-Youl;Jo, Bong-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.177-197
    • /
    • 2011
  • In this study, a series of fire experiments under $HC_{inc}$ and ISO834 (duration of 4 hour) fire scenarios were carried out for three different types of fire protection measures for the segment joint to evaluate their applicabilities to an immersed tunnel. The experimental results revealed that an expansion joint installed to allow relative movements between concrete element ends in an segment joint is the most vulnerable to a severe fire. For the fire protection measure where the originally designed steel plates at an expansion joint arc replaced by fire-resistant boards, the experiments showed that they cannot achieve good fireproofing performance under both $HC_{inc}$ fire scenario and ISO834 (4 hour) fire scenarios since the installation of fire-resistant boards results in the reduction of the sprayed fire insulation thickness. On the other hand, the application of modified bent steel plates replacing the original steel plates was proved to be very successful in fireproofing of the expansion joint due to more sprayed materials filled in bent steel plate than in the original design concept as well as higher adhesion between the steel plate and the sprayed fire insulation layer.

Analysis of restrained steel beams subjected to heating and cooling Part I: Theory

  • Li, Guo-Qiang;Guo, Shi-Xiong
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.1-18
    • /
    • 2008
  • Observations from experiments and real fire indicate that restrained steel beams have better fire-resistant capability than isolated beams. Due to the effects of restraints, a steel beam in fire condition can undergo very large deflections and the run away damage may be avoided. In addition, axial forces will be induced with temperature increasing and play an important role on the behaviour of the restrained beam. The factors influencing the behavior of a restrained beam subjected to fire include the stiffness of axial and rotational restraints, the load type on the beam and the distribution of temperature in the cross-section of the beam, etc. In this paper, a simplified model is proposed to analyze the performance of restrained steel beams in fire condition. Based on an assumption of the deflection curve of the beam, the axial force, together with the strain and stress distributions in the beam, can be determined. By integrating the stress, the combined moment and force in the cross-section of the beam can be obtained. Then, through substituting the moment and axial force into the equilibrium equation, the behavior of the restrained beam in fire condition can be worked out. Furthermore, for the safety evaluation and repair after a fire, the behaviour of restrained beams during cooling should be understood. For a restrained beam experiencing very high temperatures, the strength of the steel will recover when temperature decreases, but the contraction force, which is produced by thermal contraction, will aggravate the tensile stresses in the beam. In this paper, the behaviour of the restrained beam in cooling phase is analyzed, and the effect of the contraction force is discussed.

Predicting residual moment capacity of thermally insulated RC beams exposed to fire using artificial neural networks

  • Erdem, Hakan
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.711-716
    • /
    • 2017
  • This paper presents a method using artificial neural networks (ANNs) to predict the residual moment capacity of thermally insulated reinforced concrete (RC) beams exposed to fire. The use of heat resistant insulation material protects concrete beams against the harmful effects of fire. If it is desired to calculate the residual moment capacity of the beams in this state, the determination of the moment capacity of thermally insulated beams exposed to fire involves several consecutive calculations, which is significantly easier when ANNs are used. Beam width, beam effective depth, fire duration, concrete compressive and steel tensile strength, steel area, thermal conductivity of insulation material can influence behavior of RC beams exposed to high temperatures. In this study, a finite difference method was used to calculate the temperature distribution in a cross section of the beam, and temperature distribution, reduction mechanical properties of concrete and reinforcing steel and moment capacity were calculated using existing relations in literature. Data was generated for 336 beams with different beam width ($b_w$), beam account height (h), fire duration (t), mechanical properties of concrete ($f_{cd}$) and reinforcing steel ($f_{yd}$), steel area ($A_s$), insulation material thermal conductivity (kinsulation). Five input parameters ($b_w$, h, $f_{cd}$, $f_{yd}$, $A_s$ and $k_{insulation}$) were used in the ANN to estimate the moment capacity ($M_r$). The trained model allowed the investigation of the effects on the moment capacity of the insulation material and the results indicated that the use of insulation materials with the smallest value of the thermal conductivities used in calculations is effective in protecting the RC beam against fire.

An Experimental Study on The Fire Resistance Performance of Steel Encased Reinforcement Concrete and Steel Framed Mortar Beam with Loading Condition (철골 철근콘크리트 보 및 철골철망 모르타르조 보의 전열특성 및 화재거동에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Yeo, In-Hwan;Kwon, Ki-Hyuck;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.80-88
    • /
    • 2012
  • This study evaluates the fire resisting capacity of the beam of the legal fire resistance construction, which establishes the Article 3 of the Regulations on Escape and Fire Resistance of Buildings. There are a total of five structures that we consider as legal fire resistance constructions, however, this study has a primary target of the reinforced concrete beam, and tests the fire-resistant performance depend on the covering depth of reinforce concrete. The results showed that it meets the three hours, the maximum statutory fire resistance time, if it was a load ratio of 0.5 and covering depth of 40 cm. Steel framed mortar beam is legal fire resistance structure that it was possessed three hours fire resistance performance, if it was a load ratio of 0.4 and covering depth of 60 mm.