• 제목/요약/키워드: fire-resistant construction

Search Result 94, Processing Time 0.023 seconds

A Numerical Model to Evaluate Fire-Resistant Capacity of the Reinforced Concrete Members (화재에 손상된 철근콘크리트 부재의 수치모델 및 내화성능해석)

  • Hwang, Jin-Wook;Ha, Sang-Hee;Lee, Yong-Hoon;Kim, Wha-Jung;Kwak, Hyo-Gyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.497-508
    • /
    • 2013
  • This paper introduces a numerical model which can evaluate the fire-resistant capacity of reinforced concrete members. On the basis of the transient heat transfer considering the heat conduction, convection and radiation, time-dependent temperature distribution across a section is determined. A layered fiber section method is adopted to consider non-linear material properties depending on the temperature and varying with the position of a fiber. Furthermore, effects of non-mechanical strains of each fiber like thermal expansion, transient strain and creep strain are reflected on the non-linear structural analysis to take into account the extreme temperature variation induced by the fire. Analysis results by the numerical model are compared with experimental data from the standard fire tests to validate an exactness of the introduced numerical model. Also, time-dependent changes in the resisting capacities of reinforced concrete members exposed to fire are investigated through the analyses and, the resisting capacities evaluated are compared with those determined by the design code.

A Basic Study on Required Performance and Development Direction of Fire Resistance Wall on High-rise Building (초고층 건축물용 내화벽체 요구성능 및 개발방향 설정을 위한 기초연구)

  • Kim, Dae-Hoi;Park, Soo-Young
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • Recently the interest in disaster prevention on super tall buildings is increasing. Especially in fire, against increasing of evacuation time due to high-rise, It is being tried to minimize the fire spread in building. Fire compartments using the fire-resistant wall and door, typical method to control the fire spread in buildings, delay the fire spread to other compartments and consequently evacuation time increases. But the existing provisions adjure only 2-hour fire resistance with maximum limit regardless of the super tall buildings, so this is a obstacle for research and development of the fire resistance wall in super tall buildings. In this study, we reviewed the fire resistance ratings of the wall, and presented the development directions for the fire resistance wall in super tall buildings considering fire resistance, construction and application of the wall.

An Experimental Study on The Fire Resistance Performance of Steel Encased Reinforcement Concrete and Steel Framed Mortar Beam with Loading Condition (철골 철근콘크리트 보 및 철골철망 모르타르조 보의 전열특성 및 화재거동에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Yeo, In-Hwan;Kwon, Ki-Hyuck;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.80-88
    • /
    • 2012
  • This study evaluates the fire resisting capacity of the beam of the legal fire resistance construction, which establishes the Article 3 of the Regulations on Escape and Fire Resistance of Buildings. There are a total of five structures that we consider as legal fire resistance constructions, however, this study has a primary target of the reinforced concrete beam, and tests the fire-resistant performance depend on the covering depth of reinforce concrete. The results showed that it meets the three hours, the maximum statutory fire resistance time, if it was a load ratio of 0.5 and covering depth of 40 cm. Steel framed mortar beam is legal fire resistance structure that it was possessed three hours fire resistance performance, if it was a load ratio of 0.4 and covering depth of 60 mm.

A Rigorous Examination of the Interplay Between Fire Resistance of 1-Hour Rated Fireproof Steel Walls and the Flexural Strength of Individual Panels (1시간 내화구조용 철강재 벽체의 내화성능과 단위 패널 휨강도의 관계 고찰)

  • Jeon, Soo-Min;Ok, Chi-Yeol;Kang, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.537-546
    • /
    • 2023
  • For the purpose of fire delineation within buildings, steel walls in Korea are mandated to undergo rigorous certification as fire-resistant entities, substantiated via a series of qualitative assessments. Predominantly, these evaluations comprise the fire resistance test paired with supplementary examinations; specifically for steel walls, these encompass the gas hazard and panel bending strength tests. Given the prevalence of semi-noncombustible core materials, gas hazard tests are largely rendered superfluous, pivoting the focus solely onto the panel bending strength test during the certification trajectory. This particular test is designed to gauge the flexural robustness of individual wall panels. An enhanced bending strength is postulated to fortify both the structural integrity and thermal insulation of the wall by mitigating potential deformations. In this scholarly exploration, an analytical deep dive was undertaken into extant, valid certification test datasets. The endeavor aimed to ascertain the depth of correlation between the designated fire resistance metric and the bending strength, the latter being the sole supplementary assessment for steel walls. In distilling the findings, it was discerned that temperature elevations beyond baseline values exhibited no statistically salient linkage with the panel's bending strength.

Experimental Study on Fire-Resistant Characteristics of Bi-Directionally Prestressed Concrete Panel under RABT Fire Scenario (RABT 화재시나리오를 적용한 이방향 프리스트레스트 콘크리트 패널부재의 내화특성에 관한 실험적 연구)

  • Yi, Na-Hyun;Lee, Sang-Won;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.695-703
    • /
    • 2012
  • Recently, major infrastructure such as bridges, tunnels, PCCVs (Prestressed Concrete Containment Vessel), and gas tanks are Prestressed Concrete (PSC) structure types, which improve their safety by using confining effect from prestressing. Generally, concrete is known to be an outstanding fire resistant construction material. Because of this reason, researches related to extreme fire loaded PSC member behaviors are not often conducted even though PSC behavior under extreme fire loading is significantly different than that of ordinary reinforced concrete (RC) behavior. Therefore, in this study, RABT fire loading tests were performed on bi-directionally prestressed concrete panels with $1000{\times}1400{\times}300mm$ dimensions. The prestressed specimens were applied with 430 kN prestressing (PS) force using unbonded PS thread bars. Also, residual strength structural tests of fire tested PSC and ordinary RC structures were performed for comparison. The study results showed that PSC behavior under fire loading is significantly different than that of RC behavior.

A Research for Identification Method of Sprayed Fire-Resistive Material by Thermal Analysis (열분석을 통한 내화 뿜칠재 일치성분석 연구)

  • Cho, Nam-Wook;Rie, Dong-Ho;Shin, Hyun-Jun
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • As recent buildings are getting more high-rise and larger, steel structures, not a reinforced concrete structure, for columns and beams among the main structural members in a building are being widely used. Steels used for the main members of a building are constructed with a fire-resistive structure by applying them with fire-resistive coatings. The introduction of a simple test method that can verify the performance of fire-resistive material constructed on a site without conducting a fire-resistant test(real scale fire test) is needed and this study derived a site analysis method possible to make a rapid and scientific analysis through the analysis of components (instrumental analysis) concerning tire-resistive materials. the possibility of application of it in analyzing congruence over site construction materials by recognizing it as a standard material after securing an inherent fingerprint area of tire-resistive materials of which performance was verified in the concrete through thermal analysis was proved through experiments. This research result can be minimize of casualties, who is harmed to building collapse according to structures fire.

High Temperature Properties of Cement Mortar Using EVA, EVCL Redispersible Polymer Powder and Fly Ash (EVA, EVCL 분말수지와 플라이애시를 혼입한 시멘트 모르타르의 고온특성)

  • Song, Hun;Shin, Hyeonuk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.365-372
    • /
    • 2018
  • 3D printing technology of construction field can be divided into structural materials, interior and exterior finishing materials, and is mainly done by extruding and adapting. Particularly when it is applied as an exterior materials, it is mainly applied to an unstructured exterior materials and high accuracy is required. The exterior materials can be used as a cement composite materials, it is suitable also for a additive type manufacturing, and the role of a redispersible polymer powder is important. But, high temperatures, redispersible polymer cement base material beget dehydration and micro crack of cement matrix. In this research, we developed a EVA, EVCL redispersible polymer cement base material applicable as a 3D printing exterior materials, confirmed density and strength characteristics for application as an exterior materials, a flame retardancy test for improving the fire resistance of buildings and confirmed its possibility. From the test result, developed EVCL redispersible polymer cement mortar showed good stability in high temperatures. These high temperature stability is caused by the ethylene-vinyl chloride binding. Thus, this result indicates that it is possible to fire resistant 3D printing interior and exterior finishing materials.

Experimental Study on Fire Resistant Capacity and Thermal Conduction of Construction Material Using the Circulation Resources (폐콘크리트 순환자원을 이용한 건설재료의 화재내력 및 단열성에 관한 실험적 연구)

  • Choi, Jea-Nam;Hong, Se-Hwa;Son, Ki-Sang
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.3
    • /
    • pp.121-128
    • /
    • 2010
  • This is to show some basic data for introducing both circulated aggregate and recycled powder producing waste concrete. Standard-mixing design for 24MPa has been basically used and added and replaced normal aggregate with recycled powder made of waste concrete. In addition, polycarboxylate high-range water reducing agent has been used because recycled powder is missing adhesive strength and it is not compare with cement's adhesive strength. Compressive strength with powder mixture of 2%, 4%, 6%, 8%, and 10% has been decreased down to 80% of normal concrete material strength without recycled powder mixture. $200^{\circ}C$, $400^{\circ}C$ and $600^{\circ}C$ heated concrete were compressively tested in order to find out concrete strength resistant to high temperature. heat capacity was also tested, based on the expectancy of its low conductivity. In addition, thermal conduction test was tested in order to find out concrete insulation. According to this test, when concrete was tested by fire resistance, it using the circulation aggregate was same resulted by concrete using the natural aggregate. also, recycle powder was not effecting insulation performance. but it is fit to standard on concrete insulation of building law.

Development of Lighting Compressed by Injection Yellow Ocher Soil

  • Kwak, Woo-Seob
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.6
    • /
    • pp.452-459
    • /
    • 2008
  • The compressed injection yellow ocher soil is the process-technology by drying the product through sunshine, not by firing like pottery and ceramic ware. It is the technology of development being able to achieve the far infrared ray and humidity adjustment by adding recycling paper, Korean paper and bamboo salt, and it corresponds with the construction enforcement ordinance 2007 as an interior-finishing product which is fire-resistant. In case that the yellow ocher soil would be used as lighting device and interior-finishing material and decoration, it could contribute to an improvement of National Health by avoiding the sick house syndrome and adding humidity adjustment, and it has more efficient economic effect due to using recycle-available additives. Through such developments of the yellow ocher soil products the domestic market of lighting device and construction material can be advanced and the replacement effect of imported goods & also export effect can be expected accordingly.

  • PDF

Study on the Fire Risk Prediction Assessment due to Deterioration contact of combustible cables in Underground Common Utility Tunnels (지하공동구내 가연성케이블의 열화접촉으로 인한 화재위험성 예측평가)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.135-147
    • /
    • 2015
  • Recent underground common utility tunnels are underground facilities for jointly accommodating more than 2 kinds of air-conditioning and heating facilities, vacuum dust collector, information processing cables as well as electricity, telecommunications, waterworks, city gas, sewerage system required when citizens live their daily lives and facilities responsible for the central function of the country but it is difficult to cope with fire accidents quickly and hard to enter into common utility tunnels to extinguish a fire due to toxic gases and smoke generated when various cables are burnt. Thus, in the event of a fire, not only the nerve center of the country is paralyzed such as significant property damage and loss of communication etc. but citizen inconveniences are caused. Therefore, noticing that most fires break out by a short circuit due to electrical works and degradation contact due to combustible cables as the main causes of fires in domestic and foreign common utility tunnels fire cases that have occurred so far, the purpose of this paper is to scientifically analyze the behavior of a fire by producing the model of actual common utility tunnels and reproducing the fire. A fire experiment was conducted in a state that line type fixed temperature detector, fire door, connection deluge set and ventilation equipment are installed in underground common utility tunnels and transmission power distribution cables are coated with fire proof paints in a certain section and heating pipes are fire proof covered. As a result, in the case of Type II, the maximum temperature was measured as $932^{\circ}C$ and line type fixed temperature detector displayed the fire location exactly in the receiver at a constant temperature. And transmission power distribution cables painted with fire proof paints in a certain section, the case of Type III, were found not to be fire resistant and fire proof covered heating pipes to be fire resistant for about 30 minutes. Also, fire simulation was carried out by entering fire load during a real fire test and as a result, the maximum temperature is $943^{\circ}C$, almost identical with $932^{\circ}C$ during a real fire test. Therefore, it is considered that fire behaviour can be predicted by conducting fire simulation only with common utility tunnels fire load and result values of heat release rate, height of the smoke layer, concentration of O2, CO, CO2 etc. obtained by simulation are determined to be applied as the values during a real fire experiment. In the future, it is expected that more reliable information on domestic underground common utility tunnels fire accidents can be provided and it will contribute to construction and maintenance repair effectively and systematically by analyzing and accumulating experimental data on domestic underground common utility tunnels fire accidents built in this study and fire cases continuously every year and complementing laws and regulations and administration manuals etc.