• 제목/요약/키워드: fire ventilation

검색결과 330건 처리시간 0.026초

An Experimental Study on the Ventilation velocity of the Variation of Burning rate in Tunnel Fires - Heptane pool fire case (터널 화재시 배연속도가 연소율변화에 미치는 실험적 연구 - Heptane 풀화재 경우)

  • Ryou, Hong-Sun;Yang, Seung-Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제7권2호
    • /
    • pp.109-117
    • /
    • 2005
  • In this study, the 1/20 reduced-scale experiments using Froude scaling were conducted to investigate the ventilation velocity of the variation of burning rate in tunnel fires. The heptane square pool fire with heat release rate ranging from 3.71~15.6 kW were used. The burning rate of fuel was obtained by measuring mass using load cell and temperature distributions were measured by K-type theomocouples in order to investigate smoke movement. The ventilation velocity in the tested tunnel was controlled by inverter of the wind tunnel. In heptane pool fire case, the increase in ventilation velocity incresed the burning rate due to the direct supply of oxygen to the fire plume. For the same dimensionless velocity($\bar{V}$), burning rate increased as the size of pool fire decreased.

  • PDF

An Experimental Study on Smoke Spread Using a Reduced-scale Subway Building Model (지하역사 축소모델을 이용한 연기확산에 대한 실험적 연구)

  • Kim, Myung-Bae;Choi, Byung-Il
    • Fire Science and Engineering
    • /
    • 제22권2호
    • /
    • pp.49-56
    • /
    • 2008
  • Smoke propagation for the Daegu Metro fire is reproduced by a reduced-scale model experiment. The three-story station building was modeled with 1/20-scale, and the tunnel connected to the platform was not completely modeled because of its length. To include the flow resistance the tunnel provides the mesh screens were used in the model. The fire scenario was selected based on the fire growth rate of the metro car seat where the fire initiated. The time when smoke arrived at each compartment in the station building was measured by thermocouples and visualization. Regarding fire ventilation, the air supply that has been accepted as conventional design in a subway metro building intensifies smoke spread. The results show that the whole building was filled with smoke in about 10 minutes in case of no ventilation.

A Study on the Discrimination of Fire Pattern by the Phenomenological Observation (Focused on the Fire Cases) (현상학적 관찰에 의한 연소패턴의 식별에 관한 연구(사례를 중심으로))

  • Choi, Don-Mook;Choi, Sung-Bok;Choi, Jae-Soung
    • Fire Science and Engineering
    • /
    • 제23권6호
    • /
    • pp.98-110
    • /
    • 2009
  • The burned patterns of fire are changed very diversely according to the direction of wind, conditions of combustibles, shape of buildings and so on in the fire scenes. And careful attentions are required on the determining of ignition point and fire causes. In this study, we examined that the burned pattern of fuel controlled fires and ventilation controled fires that impose a heavy burden on fire investigators, carbonized marks of floor, formed by flammable liquids, and combustion marks of falling firing materials through the fire cases. We suggest a proper fire investigation method.

Study on Heat and Smoke Exhaust Characteristics for Different Operating Modes of Platform and Tunnel Fans during a Passenger Train Fire (전동차 화재시 승강장 및 터널 환기실의 팬 작동에 따른 열 및 연기 배출 특성 연구)

  • Chang, Hee-Chul;Kim, Tae-Kuk;Son, Bong-Sei;Park, Won-Hee
    • Fire Science and Engineering
    • /
    • 제22권1호
    • /
    • pp.61-67
    • /
    • 2008
  • This study is focused on the numerical predictions of heat and smoke exhaust characteristics in an underground subway station stopping a fire train. Various ventilation operating modes with the fan equipped the platform and tunnels are considered. Distributions of temperature, carbon monoxide and visibility at a height of 1.7 m(breath height) above the platform are analysed for different ventilation fan operation mode. The numerical results show that smoke and heat is rapidly removed through tunnel by operating the tunnels fans. We suggested that during evacuation of passengers is not completed, the ventilation system in the platform is activated. After completion of passenger evacuation tunnel fans are activated but the fans in the platform are stopped.

Simulations of the Passenger Evacuation in a Fire occurred Underground Station under Various Smoke-Control Ventilation Modes (지하역사 화재발생시 제연모드에 따른 승객피난 예측)

  • Park, Won-Hee;Lee, Han-Su;Chang, Hee-Chul;Jang, Yong-Jun
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1213-1217
    • /
    • 2007
  • In this paper some sets of numerical simulations for passenger evacuation in a fire occurred underground station under various smoke-control ventilation modes. Passenger evacuation flows are calculated by EXODUS program. As input data for EXODUS program, distributions of temparature, smoke and toxicity due to fire in the underground station are evaluated by Fire Dyanamic Simulator (FDS).

  • PDF

Smoke Control According to the Ventilation Capacity in Subway Tunnel Fire: I. FDS Simulation (지하철 터널 화재시 환기시설의 용량에 따른 제연효과 I. FDS 시뮬레이션)

  • Park, Kyung-Jun;Lee, Ki-Jun;Hadi, Bettar El;Lee, Jai-Hyo;Shin, Dong-Il
    • Journal of the Korean Institute of Gas
    • /
    • 제15권3호
    • /
    • pp.31-38
    • /
    • 2011
  • In this study, we investigate simulation studies to confirm the removal of smoke through ventilation when the subway car is on fire and stopped in an underground subway tunnel, by using Fire Dynamics Simulator (FDS) which is being upgraded by NIST. The structure of subway tunnel and train for simulation modeling are based actual data from Seoul metropolitan subway. The main purpose of this study is to assure the removal efficiency of the ventilation when changing the ventilation capacity between 2.0 m/s and 3.0 m/s. The results of the study shows that carbon monoxide (CO) and carbon dioxide ($CO_2$) are reduced by about 35% as the ventilation capacity is increased by 0.5 m/s. This study also performs the grid sensitivity verification of FDS for improved accuracy of the results. To find the effective size of the grid, three cases are simulated and the results are compared.

Experimental Study on the Designed Ventilation System Performance at Rescue Station in Tunnel Fire (터널 내 화재발생시 구난역 내의 설계된 환기 시스템 성능에 대한 실험적 연구)

  • Kim, Dong-Woon;Lee, Seong-Hyeok;Ryou, Hong-Sun;Yoon, Sung-Wook
    • Journal of the Korean Society for Railway
    • /
    • 제12권1호
    • /
    • pp.9-15
    • /
    • 2009
  • In this study, the l/35 reduced-scale model experiment were conducted to investigate designed ventilation system performance at rescue station in tunnel fire. A model tunnel with 2 mm thick of steel, 10 m long, 0.19 m high and 0.26m was made by using Froude number scaling law. The cross-passages installing escape door at the center. were connected between accident tunnel and rescue tunnel. The n-heptane pool fire, $4cm\times4cm$, with heat release rate 698.97W were used as fire source. The fire source was located in the center and portal of accident tunnel as Worst case.. An operating ventilation system extracted smoke amount of 0.015 cms. The smoke temperature and carbon monoxide. concentration in cross-passage were measured to verify designed ventilation system. The results showed that, in center fire case without ventilation in accident tunnel, smoke did not propagated to rescue station. In portal tire case, smoke spreaded to rescue station without ventilation. But smoke did not propagated to rescue station with designed ventilation.

The Development of Flow Control Ventilation Damper According to the Pressure Variation of Smoke Control Room (제연구역의 압력변화에 따른 풍량제어 배출댐퍼 개발)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • 제32권4호
    • /
    • pp.69-74
    • /
    • 2018
  • This study developed a ventilation damper that can control flow rate according to pressure differential variation of the smoke control room in order to improve problems related to existing smoke management systems and maximizing performance of smoke management systems. The development damper was tested for verification of utility and performance. The supply flow of the developed ventilation damper was increased by about 1 to 5%. The results prove the effectiveness of the flow control ventilation damper by providing stable flow over the designed flow of the fan in the smoke control room. In addition, the study acquired the original technology for a flow control ventilation damper.

A Study on the Application of Ventilation Equipment in an Underground Fire (지하공간 화재시 배연장비의 활용에 관한 연구)

  • Lee, Sung-Ryong;Han, Dong-Hoon
    • Tunnel and Underground Space
    • /
    • 제20권2호
    • /
    • pp.92-96
    • /
    • 2010
  • In this study, experiments were conducted to evaluate the effectiveness of ventilation equipment in underground fires. Two type of Ventilators were used in experiments. Experiments were carried out using ethanol square pool fire. Maximum heat release rate was about 460kW. Visibility and temperature distribution were evaluated according to mechanical ventilation. In blower type ventilation, visibility was increased and temperature was lowered.

A Study on the Effective Fire and Smoke Control in Road-Tunnel with Semi-Transverse Ventilation (Oversized Exhaust System) (도로터널 화재시 반횡류식 환기방식에서의 최적배연 연구(대배기구 방식))

  • Kim, Jong-Yoon;Jeon, Yong-Han
    • Fire Science and Engineering
    • /
    • 제23권3호
    • /
    • pp.79-84
    • /
    • 2009
  • The smoke control system plays the most important role in securing evacuation environment when a fire occurs in road tunnels. Smoke control methods in road tunnels are classified into two categories which are longitudinal ventilation system and transverse ventilation system. In this study it is intended to review the characteristics of smoke behavior by performing numerical analysis for calculating the optimal smoke exhaust air volume when a fire occurs in tunnels in which transverse ventilation is applied, and for obtaining the basic data required for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions for various conditions. As a result of this study, when the critical velocity in the tunnel is 1.75m/s and 2.5m/s, the optimal smoke exhaust air volume has to be more than $173m^3/s$, $236m^3/s$ for the distance of the smoke moving which can limit the distance to 250m. In addition, in case of uniform exhaust the generated smoke is effectively taken away if the two exhaust holes near the fire region are opened at the same time.