• Title/Summary/Keyword: fire simulations

Search Result 227, Processing Time 0.026 seconds

Numerical analysis to determine fire suppression time for multiple water mist nozzles in a large fire test compartment

  • Ha, Gaghyeon;Shin, Weon Gyu;Lee, Jaiho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1157-1166
    • /
    • 2021
  • In this study, a numerical sensitivity analysis was performed to determine the fire suppression time for a large number of water mist nozzles in a large fire compartment. Fire simulations were performed using FDS (Fire dynamics simulator) 6.5.2 under the same condition as the test scenario 5 of the International Maritime Organization (IMO) 1165 test protocol. The sensitivities of input parameters including cell size, extinguishing coefficient (EC), droplets per second (DPS), and peak heat release rate (HRR) of fuel were investigated in terms of the normalized HRR and temperature distribution in the compartment. A new method of determining the fire suppression time using FDS simulation was developed, based on the concept of the cut-off time by cut-off value (COV) of the heat release rate per unit volume (HRRPUV) and the cooling time by the HRR cooling time criteria value (CTCV). In addition, a method was developed to determine the average EC value for the simulation input, using the cooling time and cut-off time.

Transient heat transfer analysis using Galerkin finite element method for reinforced concrete slab exposed to high elevated temperature

  • Han, Byung-Chan;Kwon, Young-Jin;Lee, Byung-Jae;Kwon, Seung-Jun;Chae, Young-Suk
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1097-1112
    • /
    • 2016
  • Fire loading causes a critical collapse of RC (Reinforced Concrete) Structures since the embedded steels inside are relative week against high elevated temperature. Several numerical frameworks for fire resistance have been proposed, however they have limitations such as unstable convergence and long calculation period. In the work, 2-D nonlinear FE technique is proposed using Galerkin method for RC structures under fire loading. Closed-form element stiffness with a triangular element is adopted and verified with fire test on three RC slabs with different fire loading conditions. Several simulations are also performed considering fire loading conditions, water contents, and cover depth. The proposed numerical technique can handle time-dependent fire loading, convection, radiation, and material properties. The proposed technique can be improved through early-aged concrete behavior like moisture transport which varies with external temperature.

Analysis on the Implementation Status of Domestic PBD (Performance Based Design) - Focusing on the Fire Scenario and Simulation (국내 성능위주설계의 시행현황 분석 - 화재시나리오 및 시뮬레이션을 중심으로)

  • An, Sung-Ho;Mun, Sun-Yeo;Ryu, Ill-Hyun;Choi, Jun-Ho;Hwang, Cheol-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.32-40
    • /
    • 2017
  • The current status of Performance-Based Design (PBD) implemented in 4 wide areas (Seoul, Gyeonggi, Incheon and Busan) over the past 5 years was reviewed with regard to the number of PBD implementation and target buildings. Then, detailed status related to fire scenarios, input information for fire simulation, and grid size were analyzed with the pre-review for the PBD. As a result, the domestic PBD was mainly applied to the mixed occupancy. In the fire simulations performed on the identical fire scenario and fire space, the maximum heat release rate (HRR) varied significantly depending on the PBD designer. Various combustibles were also considered for the identical fire source, and their combustion properties also showed considerable uncertainty. In addition, the applicability of accurate input information for predictive models of heat and smoke detectors was examined. Finally, the average grid size for the fire simulation using Fire Dynamics Simulator (FDS) was analyzed, and the improvement of PBD to minimize designer dependency was proposed.

A Critical Review of Current Crisis Simulation Methodology

  • Kim, Hak-Kyong;Lee, Ju-Lak
    • International Journal of Contents
    • /
    • v.7 no.1
    • /
    • pp.58-64
    • /
    • 2011
  • This paper is concerned with simulation exercises used to train key response agencies for crisis situations. While 'multi-agency' simulations are increasingly acknowledged as a necessary and significant training tool for emergency response organisations, many current crisis simulations are still focused on the revision of existing response plans only. However, a crisis requires a rapid reaction, yet in contrast to an 'emergency', the risks for critical decision makers in crisis situations are difficult to measure, owing to their ill-structure. In other words, a crisis situation is likely to create great uncertainty, unfamiliarity and complexity, and consequently should be managed by adaptive or second order expertise and techniques, rather than routine or structured responses. In this context, the paper attempts to prove that the current practices of simulation exercises might not be good enough for uncertain, unfamiliar, and complex 'crisis' situations, in particular, by conducting case studies of two different underground fire crises in Korea (Daegu Subway Fire 2003) and the UK (King's Cross Fire 1987). Finally, it is suggested that the three abilities: 'flexibility', 'improvisation' and 'creativity' are critical in responding to a crisis situation.

Analysis of the Evacuation Safety of Indoor Stadiums with Automatic Opening/Closing Exit Installations (출입문용 자동개폐장치를 설치한 실내체육관의 피난안전성 분석)

  • An, Jae-Chun;Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.3
    • /
    • pp.15-21
    • /
    • 2020
  • This study analyzed the evacuation time in indoor stadiums when exits that automatically open/close when the fire sensor is triggered are installed as a means to improve the problem of closing certain exits. Firstly, when spectators on the 2nd floor stands exit through the 1st floor exits, the RSET of all inhabitants was 529.8 seconds when the automatic opening/closing exits are broken and employees are not present. Secondly, when spectators on the 2nd floor stands exit through the 1st floor exits, the RSET of all inhabitants was 445 seconds when the automatic opening/closing exits with 750mm width are working but employees are not present. Lastly, when spectators on the 2nd floor stands exit through the 1st floor exits, the RSET of all spectators was 337 seconds when the automatic opening/closing exits with 1,500mm width are working and employees are present. As a result, it was revealed that the evacuation time is shortened when the automatic opening/closing exits are working. Additional comparative studies with actual simulations of people evacuating an indoor stadium and firefighting simulations considering smoke flow are necessary.

A Numerical Study on Effective Smoke-Control System of a Rescue Station in a Tunnel Fire (터널내 열차 화재시 효과적인 구난역 제연 설비를 위한 수치 해석 연구)

  • Yang, Sung-Jin;Won, Chan-Shik;Hur, Nahm-Keon;Cha, Chul-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.575-578
    • /
    • 2006
  • In designing smoke-control system of rescue station in train tunnel, a purpose is to prevent a disaster by proposing the jet fan operation together with smoke-control curtain in tunnel fire. This study has investigated the relationship of the Heat Release Rate(HRR) and a adequate ventilation velocity to control the fire propagation in tunnel fire, and has improved the effect of the smoke-control curtain on preventing the flow of pollutants. In this study, Computational Fluid Dynamics(CFD) simulations with ST AR-CD(ver 3.24) were carried out on predicting the fire spreading and the flow of pollutants, considering jet fan operations and effect of smoke-control curtain. Our simulation domain is the full scale model of the 'DAEGWALLYEONG' 1st tunnel. The results represent that ventilation operation can control the fire spreading and pollutants effectively to prevent a disaster.

  • PDF

Fire Performance Analysis of SLIM AU Composite Beam (슬림 AU 합성보의 내화해석)

  • Kim, Myeong-Han;Oh, Myoung-Ho;Min, Jeong-Ki
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.133-140
    • /
    • 2016
  • SLIM AU(A plus U-shaped) composite beam had been developed for not only reducing the story height in residential and commercial building, but also saving the cost of floor construction. The structural performance and economic feasibility was sufficiently approved by means of structural experiments and analytical studies. Even though fire resistance of the SLIM AU composite beam was evaluated throughout furnace fire test, the fire performance of the composite beam using finite element analysis is not analysed yet. Therefore the predictions of fire resistance simulations with loading as well as temperature distribution of the composite beam are summarized in this paper.

Effect of Spray Angle of Water Mist Nozzle on Temperature Field of Compartment Fire (물분무노즐의 분사각이 화재실 내부의 온도장에 미치는 영향)

  • Kim, Sung-Chan;Ryou, Hong-Sun;Park, Hyun-Tae;Bang, Ki-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1703-1708
    • /
    • 2003
  • The present study investigates the effect of injection angle of water mist on fire suppression characteristics by numerical simulation. In order to validate the temperature field by numerical simulation, the predicted results are compared with experimental data. It shows that the temperature difference between measurements and predictions are within $10^{\circ}C$ Numerical simulations of fire suppression are performed for 4 different injection angle($60^{\circ}$, $90^{\circ}$, $120^{\circ}$, and $180^{\circ}$). The grobal mean temperature over the fire compartment decrease with increasing of spray angle. The result shows that the heat transfer between droplets and gas phase are enhaced with the increasing of spray angle. Near the fire source, temperature field by the wide spray angle is slightly higher than that of narrow injection angle because of direct cooling of fire source.

  • PDF

Effect of Spray Angle of Water Mist Nozzle on Temperature Field of Compartment Fire (물분무노즐의 분사각이 화재실 내부의 온도장에 미치는 영향)

  • 김성찬;유홍선;박현태;방기영
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.28-33
    • /
    • 2003
  • The present study investigates the effect of injection angle of water mist on fire suppression characteristics by numerical simulation. In order to validate the temperature field by numerical simulation, the predicted results are compared with experimental data. It shows that the temperature difference between measurements and predictions are within $10^{\circ}C$. Numerical simulations of fire suppression are performed for 4 different injection angle($60^{\circ}$, $90^{\circ}$, $^120{\circ}$, and $180^{\circ}$). The global mean temperature over the fire compartment decrease with increasing of spray angle. The result shows that the heat transfer between droplets and gas phase are enhanced with the increasing of spray angle. Near the fire source, temperature field by the wide spray angle is slightly higher than that of narrow injection angle because of direct cooling of fire source.

Design of corrugated sheets exposed to fire

  • Sokol, Zdenek;Wald, Frantisek;Kallerova, Petra
    • Steel and Composite Structures
    • /
    • v.8 no.3
    • /
    • pp.231-242
    • /
    • 2008
  • This paper presents results of fire tests on corrugated sheets used as load bearing structure of roofs of industrial buildings. Additional tests of bolted sheet connections to the supporting structure at ambient and elevated temperatures are described. Three connection types were tested and their resistance, stiffness and deformation capacity was evaluated. Finite element simulations of the corrugated sheet based on the experimental observations are briefly described and design models are presented.