• 제목/요약/키워드: fire severity map

검색결과 14건 처리시간 0.03초

Assessment of Vegetation Recovery after Forest Fire

  • Yu, Xinfang;Zhuang, Dafang;Hou, Xiyong
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.328-330
    • /
    • 2003
  • The land cover of burned area has changed dramatically since Daxinganling forest fire in Northeastern China during May 6 ? June 4, 1987. This research focused on determining the burn severity and assessment of forest recovery. Burned severity was classified into three levels from June 1987 Landsat TM data acquired just after the fire. A regression model was established between the forest canopy closure from 1999 forest stand map and the NDVI values from June 2000 Landsat ETM+ data. The map of canopy closure was got according to the regression model. And vegetation cover was classified into four types according to forest closure density. The change matrix was built using the classified map of burn severity and vegetation recovery. Then the change conversions of every forest type were analyzed. Results from this research indicate: forest recovery status is well in most of burned scars; and vegetation change detection can be accomplished using postclassification comparison method.

  • PDF

Landsat NBR지수를 이용한 대형산불 피해지 구분 및 피해강도의 정량적 분석 (An Quantitative Analysis of Severity Classification and Burn Severity At the targe-fire Areas Using NBR Index of Landsat Imagery)

  • 원명수;구교상;이명보
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.231-237
    • /
    • 2007
  • To monitor process of vegetation rehabilitation at the damaged area after large-fire is required a lot of manpowers and budgets. However the analysis of vegetation recovery using satellite imagery can be obtaining rapid and objective result remotely in the large damaged area. Space and airbone sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. Burn severity incorporates both short- and long-term post-fire effects on the local and regional environment. Burn severity is defined by the degree to which an ecosystem has changed owing to the fire. To classify fire damaged area and analyze burn severity of Samcheok fire area occurred in 2000, Cheongyang fire 2002, and Yangyang fire 2005 was utilized Landsat TM and ETM+ imagery. Therefore the objective of the present paper is to quantitatively classify fire damaged area and analyze burn severity using normalized burn index(NBR) of pre- and post-fire's Landsat satellite imagery.

  • PDF

Analysis for Forest Fire Damage Severity Map in Cheongyang

  • Jung Tae-Woong;Yoon Bo-Yeol;Yoo Jae-Wook;Kim Choen
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.537-540
    • /
    • 2004
  • Space-borne multi-sensor data could provide fire scar and bum severity mapping. This paper will present detail mapping of burnt areas in Cheongyange Yesan of Korea with ETM+ image. Burn severity map based on ETM+ image was found to be affected by strong topographic illumination effects in mountainous forest area. Topographic effect is a factor which causes errors in classification of high spatial resolution image like IKONOS image. Minnaert constants J( in each band of ETM+ image is derived for reduction of mountainous terrain effects. Finally, this paper computes quantitative analysis of forest fire damage by each forest types.

  • PDF

위성영상을 이용한 산불재해 분석 (Forest Fire Damage Analysis Using Satellite Images)

  • 강준묵;장천;박준규;김민규
    • 한국측량학회지
    • /
    • 제28권1호
    • /
    • pp.21-28
    • /
    • 2010
  • 산불은 산림의 주요 교란요소중의 하나로써 산림 구조와 기능에 매우 큰 영향을 미치며, 산불피해강도에 따라 피해 후 식생회복 과정이 달라질 수 있다. 산불피해지의 피해강도와 식생회복 과정을 파악하기 위해서는 많은 인력과 예산이 필요하다. 위성영상자료를 이용한 산불피해지의 피해량 분석은 신속한 정보는 물론 대규모 피해지의 객관적인 결과를 원격으로 신속하게 취득할 수 있다. 이에 본 연구에서는 충청남도 청양 예산 지역의 산불발생 전 후 위성영상을 이용한 분류 기법을 통해 연구대상 지역의 산불피해 정보를 산출하고자 하였다. 이를 위해 산불발생 전 후의 다 시기 Landsat 위성영상을 이용한 영상 분류를 통해 산불피해 지역의 면적을 산출하였으며 수치임상도와의 중첩분석을 통해 피해지역 삼림의 수종, 영급, 경급 및 수관밀도별 피해량을 효과적으로 산정할 수 있었으며 분류결과와 NDVI를 이용하여 식생회복을 모니터링 할 수 있었다.

확률밀도함수와 KOMPSAT-3A를 활용한 산불피해강도 분류 (Forest Fire Severity Classification Using Probability Density Function and KOMPSAT-3A)

  • 이승민;정종철
    • 대한원격탐사학회지
    • /
    • 제35권6_4호
    • /
    • pp.1341-1350
    • /
    • 2019
  • 본 연구는 산불 전후 KOMPSAT-3A 영상을 사용하여 산불피해지역을 분석하는 것을 목적으로 한다. KOMPSAT 시리즈 중 KOMPSAT-3A는 적외선 및 고해상도의 멀티 스펙트럼 밴드를 가진 VHR위성이다. 하지만, KOMPSAT-3A를 활용하여 산불피해강도를 분류하는 연구는 부족한 실정이다. 따라서 본 연구에서는 KOMPSAT-3A의 산불 피해강도를 분류하기 위한 새로운 알고리즘을 제시하는 것을 목표로 한다. 또한, 본 연구에서는 산불 피해지역에 대한 참조자료로 Sentinel-2로 생성한 dNBR을 사용하였다. 본 연구의 연구 지역은 2019년 4월 4일 강릉에서 발생한 산불 피해지역으로 선정하였다. 본 연구에서는 산불피해구간을 산정하기 위한 알고리즘으로 오픈 소스 통계 프로그램인 R software의 확률분포함수를 사용하였다. KOMPSAT-3A에서 산불 피해지역은 산불 전, 후 NDVI의 변화에 따라 생성되었다. 산불피해강도는 분포 함수의 표준 편차를 사용하여 각 등급 크기를 산정하였다. 총 5개 구간에 따른 산불 피해 강도가 효과적으로 분류되었다.

위성영상을 이용한 서부임진강하구권역 내 DMZ 산불지역 회복성 분석 (Recoverability analysis of Forest Fire Area Based on Satellite Imagery: Applications to DMZ in the Western Imjin Estuary)

  • 김장수;오정식
    • 한국지형학회지
    • /
    • 제28권1호
    • /
    • pp.83-99
    • /
    • 2021
  • Burn severity analysis using satellite imagery has high capabilities for research and management in inaccessible areas. We extracted the forest fire area of the DMZ (Demilitarized Zone) in the western Imjin Estuary which is restricted to access due to the confrontation between South and North Korea. Then we analyzed the forest fire severity and recoverability using atmospheric corrected Surface Reflectance Level-2 data collected from Landsat-8 OLI (Operational Land Imagery) / TIRS (Thermal Infrared Sensor). Normalized Burn Ratio (NBR), differenced NBR (dNBR), and Relative dNBR (RdNBR) were analyzed based on changes in the spectral pattern of satellite images to estimate burn severity area and intensity. Also, we evaluated the recoverability after a forest fire using a land cover map which is constructed from the NBR, dNBR, and RdNBR analyzed results. The results of dNBR and RdNBR analysis for the six years (during May 30, 2014 - May 30, 2020) showed that the intensity of monthly burn severity was affected by seasonal changes after the outbreak and the intensity of annual burn severity gradually decreased after the fire events. The regrowth of vegetation was detected in most of the affected areas for three years (until May 2020) after the forest fire reoccurred in May 2017. The monthly recoverability (from April 2014 to December 2015) of forests and grass fields was increased and decreased per month depending on the vegetation growth rate of each season. In the case of annual recoverability, the growth of forest and grass field was reset caused by the recurrence of a forest fire in 2017, then gradually recovered with grass fields from 2017 to 2020. We confirmed that remote sensing was effectively applied to research of the burn severity and recoverability in the DMZ. This study would also provide implications for the management and construction statistics database of the forest fire in the DMZ.

Landsat 영상으로부터 정규탄화지수 추출과 산불피해지역 및 피해강도의 정량적 분석 (An Quantitative Analysis of Severity Classification and Burn Severity for the Large Forest Fire Areas using Normalized Burn Ratio of Landsat Imagery)

  • 원명수;구교상;이명보
    • 한국지리정보학회지
    • /
    • 제10권3호
    • /
    • pp.80-92
    • /
    • 2007
  • 산불은 우리나라 산림의 주요 교란요소중의 하나로써 산림 구조와 기능에 매우 큰 영향을 미치며, 산불피해강도에 따라 피해 후 식생회복 과정이 달라질 수 있다. 대형산불 피해지의 피해강도와 식생회복 과정을 파악하기 위해서는 많은 인력과 예산이 필요하지만 위성영상자료를 이용한 산불피해지의 피해강도 분석은 신속한 정보는 물론 대규모 피해지의 객관적인 결과를 원격적으로 취득할 수 있다. 위성과 항공기 탑재 센서들은 피해규모를 맵핑하고 진행산불 특성을 평가하며 산불피해후의 생태적 영향 특성을 규명하는데 활용되고 있다. 본 연구에서는 2000년 삼척산불, 2002년 청양산불 그리고 2005년 양양 대형산불 피해지를 구분하고 피해강도를 정량적으로 분석하기 위해 정규탄화지수(Normalized Burn Ratio: NBR)를 활용하였다. 본 연구를 위해 산불피해 전후 동일시기의 Landsat 위성영상 자료를 활용하여 정규탄화지수(NBR)를 산출하고 30m 해상도의 피해강도 패턴을 평가하였다. 산불피해강도 평가결과, 삼척산불 피해지는 피해강도 '중' 이상(${\Delta}NBR$ 152 이상) 지역이 전체의 65%를 차지하였으며 청양 예산산불피해지는 91%, 양양산불피해지는 65%로 나타나 3지역 중 청양 예산지역이 피해강도 측면에서만 보면 가장 큰 피해를 입은 것으로 분석되었다. 따라서 RS와 GIS를 이용하여 원격 탐지된 ${\Delta}NBR$은 대규모 산불피해지의 구분은 물론 산불피해강도를 공간적으로 정량화할 수 있다.

  • PDF

NBR과 MaxEnt 모델 분석을 활용한 희귀특산식물(개느삼) 분포 및 피해량 예측 - 양구 비봉산 산불피해지를 대상으로- (Prediction of Potential Habitat and Damage Amount of Rare·Endemic Plants (Sophora Koreensis Nakai) Using NBR and MaxEnt Model Analysis - For the Forest Fire Area of Bibongsan (Mt.) in Yanggu -)

  • 윤호근;이종원;안종빈;유승봉;박기쁨;신현탁;박완근;김상준
    • 한국자원식물학회지
    • /
    • 제35권2호
    • /
    • pp.169-182
    • /
    • 2022
  • 본 연구는 산불피해가 발생한 접경지역 산림 내 희귀특산식물(개느삼) 분포를 예측하고 피해를 정량화하고자 수행되었다. 이를 위해 산불피해강도에 따른 산림면적 피해(NBR), 임상도를 통한 수종별 피해(Vegetation map), MaxEnt 모델 분석을 수행, 보다 정밀한 결과를 도출하고자 하였다. 우선, 산불피해강도 분석은 위성영상(Landsat-8)을 활용하여, 산불피해강도(ΔNBR2016-2015)를 분석하고 피해범위를 도출하였다. 임상도 작성은 환경부의 토지피복도, 산림청의 임상도, 자체적으로 식생조사를 진행하여, 산불 전·후의 임상도를 작성하고, 수종 피해 및 변화를 확인하였다. 마지막으로 MaxEnt 모델 분석은 관련문헌과 자체조사 자료를 기준으로 작성된 개느삼 실제서식지 좌표를 활용하여, AUC(Area Under Curve) 값을 도출하였다. 분석된 결과의 정밀도를 높이고자, 임상도와 결합하여, 개느삼이 주로 분포하는 소나무 군락 및 소나무-참나무림 군락을 대상으로 재분석한 결과, 대상지 내 개느삼 실제출현 좌표 325개소 중 299개 지점에서 개느삼 출현가능성이 92.0%로 예측되어 유의미한 결과를 얻을 수 있었다. 해당 자료를 산불피해강도(ΔNBR2016-2015) 자료와 중첩한 결과, 산불피해지 내 개느삼 서식가능지(예측) 면적 44,760 m2의 45.9%인 20,552 m2가 훼손된 것을 확인할 수 있었다. 따라서 본 연구는 산불로 인해 훼손된 희귀식물 서식지 면적을 정량화하고 희귀식물 보전·관리를 위한 사례가 될 것으로 기대된다.

단일 시기의 Landsat 7 ETM+ 영상을 이용한 산불피해지도 작성 (Fire Severity Mapping Using a Single Post-Fire Landsat 7 ETM+ Imagery)

  • 원강영;임정호
    • 대한원격탐사학회지
    • /
    • 제17권1호
    • /
    • pp.85-97
    • /
    • 2001
  • 인공위성영상(ETM+)을 이용하여 산불피해지역을 분석하기 위해 KT(Kauth-Thomas)변환기법과 IHS(Intensity-Hue-Saturation)변환기법을 적용하여 비교해 보고 산불피해등급지도를 작성하였다. 이 연구는 두 부분으로 나누어 수행되었는데, 그 첫 번째는 기하보정만 수행한 영상의 7, 4, 1밴드를 이용하여 IHS변환을 적용하여 단순 슬라이싱 기법으로 산불피해지역을 피해 정도별로 등급화 하는 것이 가능한가를 분석하였다. 그 결과 각 컴포넌트에서 클래스의 분광 특성이 서로 겹쳐서 단순 슬라이싱 기법으로는 적절한 분류가 이루어지지 않았다. 두 번째는 방사 및 지형보정을 한 영상을 각각 IHS와 KT변환기법으로 변환시킨 후 최대우도법을 이용해 분류하였다. 현장데이타가 부족하여 cross-validation을 수행하였으며, 일관되게 KT변환기법에 의한 분류가 IHS기법에 의한 분류보다 더 좋은 결과를 보여주었다. 또한 KT feature space와 IHS 컴포넌트의 분광분포를 그래프 상에서 분석해 보았다. 이 연구에서는 KT변환기법이 IHS변환기법보다 산불피해지역을 추출함에 있어 더 높은 정확도를 나타내고, 산불과 관련된 지표의 물리적 특성을 더 잘 반영함을 볼 수 있었다.

A Study on Winter-Covered Optical Satellite Imagery for Post-Eire Forest Monitoring

  • Kim, Choen;Park, Seung-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.274-274
    • /
    • 2002
  • Damage to forest trees, caused by wildfire, changes their spectral reflectance signature. This factor led to the initiation of a research project at the Remote Sensing & GIS Laboratory, Kookmin University, to determine if multispectral data acquired by IKONOS could provide fire scar and bum severity mapping. This paper will present detail mapping of burned areas in the eastern coast of Korea with IKONOS imagery. In addition, a single post-burn Landsat-7 ETM+ data was used to compare with IKONOS, the study area. Burn severity map based on IKONOS image was found to be affected by strong topographic illumination effects in the mountain forest. But it has better the delineation of the bum-scarred area. In this study the NDVI was analyzed for geometric illumination conditions influenced by topography(slop, aspect and elevation) and shadow(solar elevation and azimuth angle).

  • PDF