• Title/Summary/Keyword: fire risk analysis

Search Result 493, Processing Time 0.025 seconds

Development of Probabilistic Risk Analysis Model on Railroad System - Its Application to Tunnel Fire Risk Analysis (철도시스템의 확률론적 위험평가 모델 개발 연구 - 터널화재 위험도 평가에의 적용)

  • Kwak Sang Log;Wang Jong Bae;Hong Seon Ho;Kim Sang Am
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.265-270
    • /
    • 2003
  • Though the probability of tunnel fire accident is very low, but critical fatalities are expected when it occurred. In this study the effect of critical safety parameters on tunnel fire accident are examined using probabilistic technique. Fire detection time, smoke spread velocity, passenger escape velocity, flash-over time, and emergency service arrival time are considered. In order to estimate the uncertainties of input parameters Monte Carlo simulation are used, and fatalities for each assumed accident scenarios are obtained as results. For the efficiency of iterative calculation PRA(Probabilistic Risk Analysis) code is developed in this study. As a result fire detection have large effect.

  • PDF

Fire and Explosion Analysis for Quantitative Risk Assessment on LNG Test Plant (LNG 시험 플랜트의 정량적 위해도 평가를 위한 화재 및 폭발사고 해석)

  • Han, Yong Shik;Kim, Myungbae;Do, Kyu Hyung;Kim, Tae Hoon;Choi, Byungil
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • Fire and explosion analysis are performed for the quantitative risk assessment on the LNG test plant. From the analysis for a case of fire due to large leakage of LNG from the tank, it is obtained that loss of lives can be occurred within the radius of 60 m from the fire origin. Specially, wind can extend the extent of damage. Because the LNG test plant is not enclosed, the explosion overpressure is less than 6 kPa and the explosion has little effect on the integrity of the LNG test plant.

A Study on the Estimation of Required Fire Resistance Time by Use of Building (건축물의 용도별 필요내화시간 산정에 관한 연구)

  • Kim, Yun-Seong;Han, Ji-Woo;Jin, Seung-Hyeon;Lee, Byeong-Heun;Kwon, Yeong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.115-116
    • /
    • 2020
  • Due to the nature of modern society, buildings are becoming larger and more complex. As a result, the design conditions of the building are changing. However, despite the complexities of buildings, the fire resistance performance is still equalized to one hour without considering fire engineering analysis in Korea, so there is a risk according to actual fire design conditions. Therefore, the purpose of this study is to calculate the required fire resistance time for actual fire through fire mechanics analysis and case study.

  • PDF

Quantitative Fire Risk Assessment and Counter Plans Based on FDS and GIS for National Road Bridges (FDS와 GIS를 이용한 교량 화재 위험도의 정량적 평가 및 적용방안)

  • Ann, Ho June;Park, Cheol Woo;Kim, Yong Jae;Jang, Young Ik;Kong, Jung Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.185-195
    • /
    • 2017
  • In recent years, unexpected bridge fire accidents have increased because of augmenting the number of traffic volumes and hazardous materials by the increment in traffics and distribution business. Furthermore, in accordance with the effort of using the under space of bridges, the ratio of occupied by combustible materials like oil tanker or lorry has been increased. As a result, the occurrence of bridge fire has been growing drastically. In order to mitigate the accident of bridge fire, risk assessment of bridge fire has been studied, however, practical risk models considering safety from users' viewpoints were scarce. This study represented quantitative risk assessment model applicable to national road bridges in Korea. The primary factors with significant impacts on bridge fire accidents was chosen such as clearance height, materials of bridges, arrival time of fire truck and fire intensity. The selected factors were used for Fire Dynamics Simulation (FDS) and the peak temperature calculated by FDS in accordance with the fire duration and fire intensity. The risk assessment model in bridge fire reflected the FDS analysis results, the fire damage criteria, and the grade of fire truck arrival time was established. Response plans for bridge fire accidents according to the risk assessment output has been discussed. Lastly, distances between bridges and fire stations were calculated by GIS network analysis. Based on the suggested assessment model and methodology, sample bridges were selected and graded for the risk assessment.

An Investigation of Fire Human Reliability Analysis (HRA) Factors for Quantification of Post-fire Operator Manual Actions (OMA) (화재 후 운전원수동조치(OMA) 정량화를 위한 화재 인간신뢰도분석 (HRA) 요소에 대한 고찰)

  • Sun Yeong Choi;Dae Il Kang;Yong Hun Jung
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.6
    • /
    • pp.72-78
    • /
    • 2023
  • The purpose of this paper is to derive a quantified approach for Operator Manual Actions (OMAs) based on the existing fire Human Reliability Analysis (HRA) methodology developed by the Korea Atomic Energy Research Institute (KAERI). The existing fire HRA method was reviewed, and supplementary considerations for OMA quantification were established through a comparative analysis with NUREG-1852 criteria and the review of the existing literature. The OMA quantification approach involves a timeline that considers the occurrence of Multiple Spurious Operations (MSOs) during a Main Control Room Abandonment (MCRA) determination and movement towards the Remote Shutdown Panel (RSP) in the event of a Main Control Room (MCR) fire. The derived failure probability of an OMA from the approach proposed in this paper is expected to enhance the understanding of its reliability. Therefore, it allows moving beyond the deterministic classification of "reliable" or "unreliable" in NUREG-1852. Also, in the event of a nuclear power plant fire where multiple OMAs are required within a critical time range, it is anticipated that the OMA failure probability could serve as a criterion for prioritizing OMAs and determining their order of importance.

A Study on the Fire Fighting General Index for Fire Fighting of Crowded Wooden Building Cultural Asset (군집 목조 건축문화재의 화재대응을 위한 소방방재 종합지수 연구)

  • Kwon, Heung-Soon;Lee, Jeong-Soo
    • Journal of architectural history
    • /
    • v.21 no.2
    • /
    • pp.37-52
    • /
    • 2012
  • This research has set up the fire fighting general index for Fire fighting of Crowded Wooden Building Cultural Asset which is composed of traditional wooden building instinct or complex. The results of this study are as follows. First, Fire fighting general index for crowded wooden building cultural asset, it is necessary to set fire fighting priority by considering fire risk and cultural asset characteristic and establish the system to cope with fire disaster in the most effective way by arranging facilities with restricted resource. Second, Fire risk is the index to draw fire and spread risk of cultural asset by applying index calculation processes such as fire load, burning velocity and ignition material spread characteristic to various aspects such as individual building and complex and combining their results. Cultural asset importance index consists of individual building evaluation, publicity security degree, area importance evaluation and historical landscape degree evaluation. Third, for each index combination process, weight of each index is drawn on the basis of AHP analysis result that is performed to the specialists of related fields. The formula to apply and combine it is prepared to apply the model to include meaning of each index and comparative importance degree.

Utilizing GIS for Forecasting Fire Risk Cumi city (구미지역 산불위험도 예측을 위한 지리정보시스템의 활용)

  • Lee, Jin-Duk;Han, Seung-Hee;Sim, Jung-Bo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.371-373
    • /
    • 2010
  • Gumi is surrounded by mountains and Provincial parks are located. A high risk of forest fires that cause the spread of damage effects, and is forecast to have forest fire prevention and Geumohsan Provincial Park to preserve the target Gumi analysis was likely to cause fires. Numerical analysis to the probability of fire, clinical way, even in land cover, using Arc Gis aspect, altitude, slope, watersheds, vegetation, soil characteristics were extracted. Logistic analysis to extract the data in pixels by dividing the number analysis of forest fire risk indices presented in Gumi.

  • PDF

Effect of limestone calcined clay cement (LC3) on the fire safety of concrete structures

  • Gupta, Sanchit;Singh, Dheerendra;Gupta, Trilok;Chaudhary, Sandeep
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.263-278
    • /
    • 2022
  • Limestone calcined clay cement (LC3) is a low carbon alternative to conventional cement. Literature shows that using limestone and calcined clay in LC3 increases the thermal degradation of LC3 pastes and can increase the magnitude of fire risk in LC3 concrete structures. Higher thermal degradation of LC3 paste prompts this study toward understanding the fire performance of LC3 concrete and the associated magnitude of fire risk. For fire performance, concrete prepared using ordinary Portland cement (OPC), pozzolanic Portland cement (PPC) and LC3 were exposed to 16 scenarios of different elevated temperatures (400℃, 600℃, 800℃, and 1000℃) for different durations (0.5 h, 1 h, 2 h, and 4 h). After exposure to elevated temperatures, mass loss, residual ultrasonic pulse velocity (rUPV) and residual compressive strength (rCS) were measured as the residual properties of concrete. XRD (X-ray diffraction), TGA (thermogravimetric analysis) and three-factor ANOVA (analysis of variance) are also used to compare the fire performance of LC3 with OPC and PPC. Monte Carlo simulation has been used to assess the magnitude of fire risk in LC3 structures and devise recommendations for the robust application of LC3. Results show that LC3 concrete has weaker fire performance, with average rCS being 11.06% and 1.73% lower than OPC and PPC concrete. Analysis of 106 fire scenarios, in Indian context, shows lower rCS and higher failure probability for LC3 (95.05%, 2.22%) than OPC (98.16%, 0.22%) and PPC (96.48%, 1.14%). For robust application, either LC3 can be restricted to residential and educational structures (failure probability <0.5%), or LC3 can have reserve strength (factor of safety >1.08).

The Applicability Analysis of Life Safety Codes for High Fire Risk Building Applications (화재 위험성을 중심으로 한 건축물 용도별 한국형인명안전기준의 적용성 검토에 관한 연구)

  • Koo, In-hyuk;Kim, Hye-Won;Jin, Seung-Hyeon;Lee, Byeong-Heun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.103-104
    • /
    • 2022
  • In Korea, the occurrence and risk of similar fires are high, so setting up fire prevention measures through fire case investigation is considered the most basic measure in securing human safety. In particular, calculation of evacuation capacity in evacuation safety design of buildings is the most important factor that directly affects evacuation safety performance. However domestic standards is not consider about occupant characteristics. also the case of domestic, it has the problem that the law is partially applied when the fire safety design of buildings. Therefore, the purpose of this study is to study the current status and related regulations of the life safety code for the application of high fire risk buildings, and to analyze the difference in evacuation time through Case Study.

  • PDF

Analysis of Fire Scenarios and Evaluation of Risks that might Occur in Operation Stage of CAES Storage Cavern (CAES 저장 공동 운영단계에서 발생 가능한 리스크 평가 및 화재 시나리오 분석)

  • Yoon, Yong-Kyun;Ju, Eun-Hye;Seo, Saem-Mul;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.107-114
    • /
    • 2015
  • This study focuses on assessing risks which might occur in operation stage of CAES storage cavern and analyzing fire scenarios for the risk that have been assessed with highest risk level. Risks in operation stage were categorized into upper risk group and lower risk group. Components of upper risk group are technical risk, facility risk and natural disaster risk. Lower risk group is composed of 11 sub-risks. 20 experts were chosen to survey questionnaires. ANP model was applied to analyze the relative importance of 11 sub-risks. Results of risk analysis were compared with risk criterion to set risk priorities, and the highest risk was determined to be 'occurrence of the fire within the management opening'. Three fire scenarios were developed for the highest risk level and FDS (Fire dynamics Simulator) was used to analyze these scenarios. No. 3 scenario which air blows from tunnel into outside atmosphere represented that a rate of smoke spread was the fastest among three fire scenarios and a smoke descended most quickly below the limit line of breathing. Thus, No. 3 scenario turned out to be the most unfavorable condition when operating staffs were evacuated from access tunnel.