• Title/Summary/Keyword: fire resources

Search Result 300, Processing Time 0.022 seconds

A Study on the Variation of Strength and Color According to Heated Temperatures of Fire­Damaged Concrete (화재피해 콘크리트의 수열온도에 따른 강도 및 색상 변화 연구)

  • Choi, Kwang-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.325-332
    • /
    • 2020
  • In the safety diagnosis of fire-damaged concrete structures, it is difficult to evaluate the strength and changes in materials due to high temperatures with the existing durability analysis method. In particular, the compressive strength of specimen with different damage levels by thickness is used as a representative value for reducing the compressive strength of the structural member. In this study, a heating experiment was performed with only top face heating and fully heating conditions at 400℃ to 800℃. After heating, splitting tensile test and color analysis were performed to sliced specimens with a thickness of 20mm accompanied by the compressive test of a fully heated specimen. As a result of the experiment, the compressive strength reduction rate calculated from the splitting tensile strength of every sliced specimen appeared to be within 10% of the fully heated specimen on aver age, and the hue value analysis showed consistent color values were observed by red at 400℃-600℃ and gray at 700℃ or above. It follows that the techniques proposed in this study are reasonably assessable to estimate heated temperature and residual compressive strength and damage depth of concrete.

Effects of Urban Greenspace on Microclimate Amelioration, $CO_2$ Sequestration and Eire Obstruction (도시녹지의 미기후개선, $CO_2$흡수 및 화재방지의 효과)

  • ;Yoshiteru Nojima
    • Korean Journal of Plant Resources
    • /
    • v.13 no.3
    • /
    • pp.162-170
    • /
    • 2000
  • This study quantified the effects of urban greenspace on microclimate amelioration and atmospheric $CO_2$ reduction for several residential districts selected in Korea and Japan. The study also explored fire obstruction by urban trees to develop systematic planting guidelines. Transpiration by a Zelkova serrata tree (diameter at breast height: 15 cm) in a day of August equaled cooling effect of about 3 air conditioners running for 12 hours. Average air temperature for the growing season was 0.5$^{\circ}C$ and 1.2$^{\circ}C$ cooler, respectively, in districts with 12% and 22% cover of woody plants than in a district with no vegetation. Annual $CO_2$ uptake and $O_2$ production by woody plants were 3 times greater in a district which was 2 times higher in their cover. Woody plants played, in a district with their 22% cover, an important role through offsetting total $CO_2$ emission from the district by about 3% annually, and through producing 10% of annual $O_2$ requirement by all residents within the district. Appropriate planning strategies of residential greenspace, including species selection, planting layout, greenspace enlargement, and maintenance were suggested to improve microclimate amelioration, air purification, and fire obstruction.

  • PDF

Thermal Insulation and Flame Retardant Properties of Cement Based Super Light-weight Inorganic Thermal Insulation using 100㎛ Grade Glass Bubble (100㎛급 글라스 버블 혼입 시멘트계 초경량 무기 단열재의 단열 및 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.642-649
    • /
    • 2021
  • Energy saving standard for buildings are strengthened, the application of exterior insulation finishing system and thickness of insulation materials are increasing. Most buildings with exterior insulation finishing system is applied organic insulating material. Organic insulating material have workability, economic feasibility, reduction in construction cost, and excellent thermal insulation performance. However, Organic insulating material is very vulnerable to heat, so when a fire occurs, rapid fire spread and toxic gas are generated, causing many casualties. Inorganic insulating material can be non-combustible performance, but it is heavy and has low thermal insulation performance. Mineral wool has higher thermal insulation performance than other types of inorganic insulating material, but mineral wool is disadvantageous to workability and vulnerable to moisture. Glass bubble are highly resistant to water and chemically stable substances. In addition, the density of the glass bubble is very low and the particles are spherical, fluidity is improved by the ball bearing effect. Glass bubbles can be used with cement-based ino rganic insulating material to impro ve the weight and thermal insulatio n perfo rmance o f cement-based inorganic insulation. This study produced a inorganic insulating materials were manufactured using cement-based materials and glass bubble. In order to evaluate the insulation performance and flame retardant performance of cement-based super light-weight inorganic insulating materials using with glass bubble, insulation performance or flame retardant and non-combustible performance were evaluated after manufacturing insulating materials using micro cement and two types of glass bubbles. From the test result, Increasing the mixing ratio of glass bubbles improved the insulation performance of cement-based super light-weight inorganic insulating materials, and when the mixing ratio of glass bubbles was 10%, it sho wed sufficient flame retardant and no n-co mbustible perfo rmance.

Performance on Flame-Retardant Polyurethane Coatings for Wood and Wood-based Materials (목재 및 목질재료용 난연성 폴리우레탄수지 도막의 난연성능)

  • Kim, Jong-In;Park, Jong-Young;Kong, Young-To;Lee, Byoung-Hoo;Kim, Hyun-Joong;Roh, Jeang-Kwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.172-179
    • /
    • 2002
  • In this study, two materials treated with a flame retardant were examined for their fire resistance. The first, MDF (medium density fiberboard) was overlaid by an oak sliced veneer, which was either treated by soaking in a 6wt.% solution of flame retardant chemicals (pentabromine-chlorinated paraffin) or non-treated and then was coated with either a flame retardant polyurethane coating or with a common polyurethane coating. The second material, Pinus koraiensis penal was either treated by a spray treatment using a flame retardant solution or non-treated and then was coated with either a flame retardant polyurethane coating or with a common polyurethane coating. Pentabromine-chorinated paraffin chemicals were added (6 part of urethane resin) as the flame retardant chemicals in the polyurethane coatings. In the fire resistance test, the th𝜃(℃·min) decreased with the flame retardant treatment or/and the flame retardant coatings, compared to the untreated sample Weight loss (%) decreased with the flame retardant treatment or/and the flame retardant coatings. The ignition time (sec.) increased and the residual flame time (sec.) decreased with the flame retardant treatment or/and flame retardant coatings. Therefore, the flame retardant treatment or/and flame retardant polyurethane coatings have excellent incombustibility.

The Influence of Acrylic Resin Solution Concentration on Properties of Recycled Fine Aggregate (아크릴 수지 농도 차이가 순환잔골재의 물성에 미치는 영향)

  • Kkot-Nim Park;Ji-Hyun Kim;Chul-Woo Chung;Young-Chan Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.188-195
    • /
    • 2024
  • Recently, the use of recycled aggregates from construction waste has been introduced as a solution for environmental problems and aggregate shortage. In spite of the various methods to promote recycling of recycled aggregate, the use of recycled aggregate as the structural aggregate has been limited because the quality of recycled aggregate(especially recycled fine aggregate) has been considered lower than that of natural aggregate. In this work, recycled fine aggregate was immersed for an hour in acrylic resin solutions of various concentrations to improve its quality, the appropriate immersion concentration was selected by measuring the absorption capacity and skeletal density of the recycled fine aggregate, and mortar specimens were prepared to evaluate the mechanical performance in order to propose a applicable treatment process to promote the use of recycled fine aggregate. According to the experimental results, as the acrylic resin concentration increased, the absorption capacity and skeletal density of the recycled fine aggregate decreased. The absorption capacity was lowest at acrylic resin concentrations around 6 to 8 %. However, among mortar specimens made of recycled fine aggregate immersed in acrylic resin solution, the compressive strength was the highest at 4 % acrylic resin concentration, suggesting that the use of higher concentration acrylic resin solution can actually lower the compressive strength of mortar.

Evaluation for Wood Pellets from Pinus densiflora Wood Damaged by Forest Fire (산불피해 소나무재의 목질펠릿으로의 이용가능성 평가)

  • Kwon, Sung-Min;Cho, Jae-Hyun;Lee, Sung-Jae;Kwon, Gu-Joong;Hwang, Byung-Ho;Lee, Gwi-Hyun;Han, Gyu-Seong;Cha, Du-Song;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.14-20
    • /
    • 2007
  • The properties of the wood pellets from damaged wood by forest fire and sound woods were investigated. Oven-dry densities of pellets made from sound wood and the damaged wood of Pinus densiflora were 0.93~0.94 and 0.86~0.88, respectively. Compressive strength of the pellets from the woods was ranged from 145 to $168kgf/cm^2$, and there was little difference between the sound wood and the damaged wood of P. densiflora. Ash content for the sound wood and the damaged wood of Pinus densiflora were 0.32~0.37% and 0.25~0.35%, respectively, and calorific values of each pellet were ranged from 18 to 19 MJ/kg. The result of elemental analysis in carbon. hydrogen and oxygen showed 45.8~48.8%, 6.2~6.5% and 46.5~48.0%, respectively. Consequently, there seem no significant difference in the properties between damaged and sound wood pellets.

Modular Building for Urban Disaster Housing: Case Study of Urban Post-Disaster Housing Prototype in New York

  • Ford, George;Ahn, Yong Han;Choi, Don Mook
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.82-89
    • /
    • 2014
  • Disasters that destroy homes and infrastructure and cause significant financial damage are becoming more common as population centers grow. In addition, several natural disasters have resulted in a major loss of life and created countless refugees due to damage to housing. After major catastrophic disasters, it is very important that the government agencies respond to post-disaster housing issues and provide resources such as temporary housing before the full rehabilitation and reconstruction of destroyed and damaged housing. To provide affordable temporary housing for residents who may lose their homes as the result of a catastrophic disaster including storms, government agencies must develop a post-disaster housing prototype. In general, government agencies should explore several different forms of factory-built single-story, single family housing, such as modular homes, panelized homes, and precut homes. In urban cities including New York and Seoul, it is very important to provide housing which supports the demand for higher-density living spaces than single-family homes or trailers typically available due to the high population density and the desire to resettle as many residents as possible in their former neighborhoods. This study identified the urban post-disaster housing prototypes that may provide higher density housing with high quality living spaces, high air quality, and energy efficiency as well as rapid deployment. A case study of "Urban Post-Disaster Housing Prototype Program in New York" was conducted through a detailed interview process with a designer, engineer, contractor, the Office of Emergency Management (OEM) in New York, the U.S. Army Corps of Engineers (USACE), and temporary occupants. An appropriate disaster housing program that can provide living spaces for victims of disasters that keeps residents in their community and allows them to live and work in their neighborhoods was developed.

Differences in Population Density of 3 Rodent Species Between Natural Restored and Red Pine Silvicultured Forests after Forest fire (산불피해 후 자연복원과 소나무 조림을 실시한 지역에서 설치류 3종의 개체군 밀도 차이)

  • Lee, Eun-Jae;Son, Seung-Hun;Lee, Woo-Shin;Eo, Soo-Hyung;Rhim, Shin-Jae
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.4
    • /
    • pp.553-558
    • /
    • 2010
  • This study was conducted to clarify the differences in rodents population densities between natural restored and red pine silvicultured forests after forest fire in Samcheok, Gangwon Province, Korea from March to December 2008. One ha size of 3 study plots were set up in each natural restored and silvicultured stand. We trapped the small rodents during 4 consecutive nights every 2 months in each stand. Understory coverage and number of shrub stems were higher in silvicultured stand than in natural restored stand. Coverage of overstory, suboverstory and midstory, number of tree stem, woody seedling stems and dead wood, and amount of coarse woody debris were higher in natural restored stand than in silvicultured stand. Six hundred eighty eight individuals of four species, such as Apodemus agrarius, A. peninsulae, Eothenomys regulus and Tamias sibiricus were captured in our study. Number of captured small rodents were higher in natural restored stand than in silvicultured stand. Also, species compositions were differed in both stands. The captured number of A. agrarius and A. peninsulae were most highest in April and December. E. regulus were shown higher number of captured in April and June, and T. sibiricus were in June and October. Removal of coarse woody debris and silvicultural practice would not be good for the inhabitation of small rodents. For the conservation of small rodents diversity, management of understory and canopy would be needed in forest fired area.

A Study on the Spontaneous Ignition Characteristics of Wood Pellets related to Change in Flow Rate (공기유량의 변화에 대한 우드펠릿의 자연발화 특성에 관한 연구)

  • Kim, Hyeong-Seok;Choi, Yu-Jung;Choi, Jae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.590-596
    • /
    • 2019
  • Uses of fossil fuels like coal and oil increases with industrial development, and problems like abnormal climate come up as greenhouse gas increases. Accordingly, studies are actively conducted on eco-friendly renewable energy as a replacement for the main resources, and especially, wood pellets with high thermal efficiency are in the limelight as an alternative fuel in thermal power stations and gas boilers. However, despite a constant increase in their usage, few studies are conducted on their risks like fire and spontaneous combustion. Thus, this study found the auto-ignition temperature and critical ignition temperature of wood pellets with a change in flow rate in a thermostatic bath, using a sample vessel with 20 cm in length, 20 cm in height and 14 cm in thickness to predict their ignition characteristics. Consequently, at the flow rate of 0 NL/min, as the core temperature of the sample increased to higher than the ambient temperature, they ignited at $153^{\circ}C$, when the critical ignition temperature was $152.5^{\circ}C$. At the flow rates of 0.5 NL/min and 1.0 NL/min, it was $149.5^{\circ}C$, and at the flow rate of 1.5 NL/min, it was $147.5^{\circ}C$. Consequently, at the same storage, the more the flow rate, the lower the critical ignition temperature became.

Effect of Fillers on High Temperature Shrinkage Reduction of Geopolymers (충전재에 의한 지오폴리머의 고온수축 감소효과)

  • Cho, Young-Hoon;An, Eung-Mo;Chon, Chul-Min;Lee, Sujeong
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.73-81
    • /
    • 2016
  • Geopolymers produced from aluminosilicate materials such as metakaolin and coal ash react with alkali activators and show higher fire resistance than portland cement, due to amorphous inorganic polymer. The percentage of thermal shrinkage of geopolymers ranges from less than 0.5 % to about 3 % until $600^{\circ}C$, and reaches about 5 ~ 7 % before melting. In this study, geopolymers paste having Si/Al = 1.5 and being mixed with carbon nanofibers, silicon carbide, pyrex glass, and vermiculite, and ISO sand were studied in order to understand the compressive strength and the effects of thermal shrinkage of geopolymers. The compressive strength of geopolymers mixed by carbon nanofibers, silicon carbide, pyrex glass, or vermiculite was similar in the range from 35 to 40 MPa. The average compressive strength of a geopolymers mixed with 30 wt.% of ISO sand was lowest of 28 MPa. Thermal shrinkage of geopolymers mixed with ISO sand decreased to about 25 % of paste. This is because the aggregate particles expanded on firing and to compensate the shrinkage of paste. The densification of the geopolymer matrix and the increase of porosity by sintering at $900^{\circ}C$ were observed regardless of fillers.