• Title/Summary/Keyword: fire resistance property

Search Result 67, Processing Time 0.031 seconds

Fire Resistance Property of RC Structure Member Strengthened with Fiber Sheet (섬유시트로 보강된 철근 콘크리트 구조부재의 방ㆍ내화성능)

  • 이한승
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.45-50
    • /
    • 2002
  • 근년, 철근 콘크리트조 구조부재의 열화 및 건축물의 용도변경에 따라 건축물의 보수 및 보강에 관한 공법의 개발 및 그 효과를 검증하려는 연구가 활발히 진행되고 있다. 이에 따라, 보강공법으로서는 경제성ㆍ시공성 면에서 우수한 탄소섬유시트, 아라미드섬유 시트, 유리섬유시트 보강공법 및 FRP판 보강공법 등 합성수지 접착제를 사용하는 새로운 보강공법들이 폭넓게 연구되어 현장 실용화되어 사용 중에 있다. 그러나, 이들 보강공법에 관한 연구는 주로 구조적인 내력 보강효과 산정에 관한 것이 대부분이고 보강후의 내화성능 및 내구성능에 관한 연구는 매우 부족한 실정이다. 이들 보강공법은 주로 에폭시수지계 접착제에 의하여 콘크리트와 보강재의 접착력에 의하여 내력이 전달되는 메커니즘으로 되어있어 화재가 발생한 경우 내화피복이 없다면 접착제 자체의 연소에 의하여 유독가스의 발생 및 접착강도가 크게 저하되어 그 구조적인 보강성능은 급속히 저하할 것으로 판단된다. 또한, 현재 이들 보강공사는 내화성능의 검토 없이 실제 시공이 이루어지고 있으므로 화재시에는 대형참사를 일으킬 위험성이 있다.(중략)

A Study on High Strength Concrete of Concrete Filled Steel Tube Column (CFT 기둥용 초고강도 충전콘크리트에 관한 연구)

  • Jung, Keun-Ho;Lim, Nam-Gi;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.127-132
    • /
    • 2004
  • CFT(Concrete Filled Steel Tube) is a structure of circular or squared of steel column filled with concrete. The steel tube holds the concrete inside and that makes this structure to perform superior features on stiffness, proof stress, transformation, fire resistance and construction itself. In this study, by over the 800kgf/$\textrm{cm}^2$ of high strength concrete for CFT column, research has been done on the basic property of matter such as fluidity, resistance on segregation, compressive strength, setting icons of the concrete filled in the steel tube under conditions of standard weather. Physical properties of concrete for CFT that Concrete with silica fume, fly ash of air entraining and high-range water reducing agent, that used to CFT column research purpose to find the most ideal composition, which is achieved by the investigation in the concrete's property of matter like ability of Slump, Slump Flow, Air content, Bleeding, and Settlement. For this study, experiments which are bused on obtained the result through physical test are practiced, with all of the experiment, specimens only for control are produced in each method of curing and analyzed to relations with core strength in mock-up test. In mock-up test, the research is studied compactability of concrete filled in tube and degree of hydration hysteresis, as a basic reference for applying to field of CFT column which is used over 800kgf/$\textrm{cm}^2$ high strength concrete.

The Fundamental Property and Fire Resistance of the High Strength Concrete Corresponding to mixtures for the High Strength (고강도용 혼합재를 사용한 고강도 콘크리트의 기초물성 및 내화특성 검토)

  • Kim, Jong-Baek;Lee, Keon-Ho;Bae, Jun-Yeong;Jo, Sung-Hyun;Roh, Hyeon-Seung;Kim, Jung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.605-608
    • /
    • 2008
  • This study investigated fundamental properties corresponding to mixtures for the high strength, and their properties of spalling prevention after a fire test. The results were summarized as following. For the flowability of using mixtures for the high strength, the target flow was satisfied with a small quantity of high performance reducing water agent to compare with silica fume. For the compressive strength in the case of using mixtures for the high strength, it was higher to compare with silica fume at 7 days, so it was proved that using mixtures for the high strength was profitable to prevent early frost damage. The compressive strength at the 28 days of silica fume and mixtures for the high strength were similar. There was no reduced tendency at the compressive strength according fiber contents, so it found out that the bonding strength between the fiber and concrete was hardly effective. For the spalling properties, the specimens without fibers were destroyed, however using over 0.05% of NY and PP fibers was effective to prevent spalling on the high strength concrete.

  • PDF

Field Survey on the Maintenance Status of Greenhouses in Korea (온실의 유지관리 실태조사 분석)

  • Choi, Man Kwon;Yun, Sung Wook;Kim, Hyeon Tae;Lee, Si Young;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.148-157
    • /
    • 2014
  • The purpose of this study was to investigate greenhouse maintenance by farms by looking into greenhouses across the nation for greenhouse specification, disaster-resistance greenhouse construction, types and degree of damage due to natural disasters, pre-inspection in case of typhoon or heavy snow forecast, and fire-fighting facilities to prevent a fire. The findings were summarized as follows: as for greenhouse specification, the highest proportion of them were 90 m or longer both in single- and multi-span greenhouses in terms of length; 8 m or wider and 7.0~7.9 m in single- and multi-span greenhouses, respectively, in terms of width; 1.5~1.9 m and 2.0~2.9 m in single-and multi-span greenhouses, respectively, in terms of height; and 3.0~3.9 m and 6 m in single- and multi-span greenhouses, respectively, in terms of diameter. As for disaster-resistance greenhouses, farmers were reluctant to install such greenhouses. The low distribution of disaster-resistance greenhouses was attributed to the greenhouses built dependent on the old practice, the greenhouses already completed, and relatively high construction costs. As for damage by natural disasters, greenhouses were subject to more damage by typhoons than heavy snow. They mainly inspected the ceiling and side windows, entrances, and fixation bands for covering materials in case of typhoon forecast and the heating devices in case of heavy snow forecast. As for repair methods for greenhouse pipe corrosion, they preferred partial replacement to painting and did not use stiffeners for structures to prevent a natural disaster in most cases. As for the maintenance of greenhouse covering materials, most farmers inspected their sealing property but did not clean the coverings for light transmission. The destruction of structural materials can be prevented by eliminating greenhouse covering materials during a typhoon, but they were not able to do so because of the covering material replacement costs and the crops they were growing. The study also examined whether greenhouse farms had fire-fighting facilities to prevent a fire and found that they lacked the perception of greenhouse fire prevention to a great degree.

The Design and Performance Test of Mold Transformer for Outdoor Pole (50 kVA 주상용 몰드변압기의 설계 및 특성평가)

  • Cho, Han-Goo;Lee, Un-Yong;HwangBo, Kuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.132-137
    • /
    • 2002
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. The life of transformer is significantly dependent on the thermal behavior in windings. To analyse winding temperature rise, many transformer designer have calculated temperature distribution and hot spot point by finite element method(FEM). Recently, numerical analyses of transformer are studied for optimum design, that is electric field analysis, magnetic field, potential vibration, thermal distribution and thermal stress. In this paper, the temperature distribution of 50 kVA pole mold transformer for power distribution are investigated by FEM program and the temperature rise test of designed mold transformer carried out and test result is analyzed compare to simulation data. In this result, the designed mold transformer is satisfied to limit value of temperature and the other property is good such as voltage ratio, winding resistance, no-load loss, load loss, impedance voltage and percent regulation.

  • PDF

Experimental Study on the Fire Resistant Capacity of Waste Paper-Mixed Concrete (종이 혼합 콘크리트의 내화특성 실험연구)

  • Cho, Byung-Heon;Son, Ki-Sang
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.4
    • /
    • pp.83-90
    • /
    • 2007
  • This study is to find out if it can be recycled for making better concrete. Therefore, waste paper as of newspaper and newspaper are added into concrete to see if waste paper-mixing concrete can have any particular characteristic. The test result of paper concrete was compared and analyzed through four kinds of tests such as compressive strength as of a fundamental one of concrete resistant capacity against heat. $200^{\circ}C,\;400^{\circ}C\;and\;600^{\circ}C$ heated concrete were compressively tested in order to find out concrete strength resistant to high temperature. heat capacity was also tested, based on the expectancy of its low conductivity. finally flexural strength test using four reinforced concrete beams with size of $20cm{\times}30cm{\times}160cm$ was made. And concrete property exposed to the temperature showed that there are almost not effect for the strength up to $400^{\circ}C$, but it was decreased down to 50% of the original condition. volume of paper mixed with concrete without relation to paper kinds of new and waste one.

Dyeing and Fastness Properties of Oak Veneer Dyed with Vinyl Sulfone Type Reactive Dyes (비닐술폰형 반응성 염료를 이용한 오크 무늬목의 염색성 및 견뢰도 특성)

  • Cho, Hang Sung;Shim, Euijin
    • Textile Coloration and Finishing
    • /
    • v.34 no.4
    • /
    • pp.234-240
    • /
    • 2022
  • Use of processed timber can help reduce environmental damage and the economic burden of resources (important problems with use of raw timber) and can meet the needs of various fields where the sensibility of raw timber is required. Veneer wood is positioned as a high-value-added product due to its luxury and beauty, and it is used in various fields as a building-related material, such as interior decoration, furniture, flooring, building interior materials, and lumber. Dyeing is necessary to enhance the aesthetic appearance of this pattern and to expand its use. Therefore, in this study, we compared and analyzed the dye ability of oak-patterned materials with reactive dyes, and evaluated their performance as interior materials. As a result, the oak pattern was dyed with 9 kinds of reactive dyes and a comparative analysis was performed. The most suitable conditions are 50℃, 2 hours, and 0.5% o.w.f. In addition, evaluating resilience to daylight, resilience to rubbing, fire resistance, and flame retardance, yielded results suitable for use as an interior material. In this study, the dyeability of veneer dyed under various conditions using reactive dyes was compared and analyzed the performance as an interior material was evaluated.

Flame Retardant and Weather Proof Characteristic of Dan-Chung Treated Wooden by Flame Retardant Performance (방염처리 방법에 따른 단청목재의 방염 및 내후특성)

  • Park, Cheul-Woo;Hong, Sang-Wan;Lee, Jong-Kyun;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.2
    • /
    • pp.122-130
    • /
    • 2013
  • One of recent methods to protect wooden cultural assets from fire, there is the flame retardation which is applied directly to wood and it is to prevent fire through securing flame resistance for the material and delaying combustion when failed fire in advance and then to gain time for people in the room to evacuate and it has same goal with the Korean Fire Service Act by protecting life and property. However, in case of spraying flame retardant on the colored surface of the wooden cultural assets, there are continuous problems of decoloration, efflorescence and water absorbtion after sometime and accordingly there increases danger of damages of cultural assets. So when treating with flame retardant on wooden cultural assets, there has to be no problems on dancheong after sometime and securing sustainable methods for flmae retardation should be preceded. Accordingly, this study aims to provide basic sources for selecting proper flame retardation methods by evaluating and analyzing flame retardation capabilities according to types of flame retardants which are frequently used nowadays and spraying them on the dancheong-painted surface and confirming if there is no problem on the dancheong and wood after sometime and if flame retardation effect is sustainable with its quality and capability through precise analysis.

Manufacture of Cement-Bonded Particleboards from Korean Pine and Larch by Curing of Supercritical CO2 Fluid

  • Suh, Jin-Suk;Hermawan, Dede;Kawai, Shuichi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.41-50
    • /
    • 2000
  • Cement-bonded particleboard is being used as outdoor siding material all over the world, because this composite particularly bears a light weight, high resistance against fire, decay, and crack by cyclic freezing and thawing, anti-shock property, and strength enhancement. Construction systems are currently changing into a frame-building style and wooden houses are being constructed with prefabrication type. Therefore, they require a more durability at outdoor-exposed sides. In this study, the cement hydration property for Korean pine particle, Japanese larch particle and face- and middle layer particles (designated as PB particle below) used in Korean particleboard-manufacturing company was investigated, and the rapid manufacturing characteristics of cement-bonded particleboard by supercritical $CO_2$ curing was evaluated. Korean pine flour showed a good hydration property, however, larch flour showed a bad one. PB particle had a better hydration property than larch flour. The addition of $Na_2SiO_3$ indicated a negative effect on hydration, however, $MgCl_2$ had a positive one. Curing by supercritical $CO_2$ fluid gave a conspicuous enhancement in the performances of cement-bonded particleboards compared to conventional curing. $MgCl_2$ 3%-added PB particle had the highest properties, and $MgCl_2$ 1%-added Korean pine particle had the second class with the conditions of cement/wood ratio of 2.7, a small fraction-screened particle and supercritical curing. On the contrary, the composition of non-hammermilled or large fraction-screened particle at cement/wood ratio of 2.2 was poorer. Also, the feasibility for actual use of 3%-added, small PB particle-screened fraction was greatest of all the conventional curing treatments. Relative superiority of supercritical curing vs. conventional curing at dimensional stability was not so apparent as in strength properties. Through the thermogravimetric analysis, it was ascertained that the peak of a component $CaCO_3$ was highest, and the two weak peaks of calcium silicate hydrate and ettringite and $Ca(OH)_2$ were present in supercritical treatment. Accordingly, it was inferred that the increased formation of carbonates in board contributes to strength enhancement.

  • PDF

Basic Study on Fiber Composite Panel Production for Impact·Blast Resistant (방호·방폭 보강용 복합섬유 패널 제작을 위한 기초연구)

  • Kim, Woonhak;Kang, Seokwon;Yun, Seunggyu
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.235-243
    • /
    • 2015
  • The methods to improve the protection and explosion-proof performance of concrete structures include the backside reinforcement or concrete material property improvement and the addition of structural members or supports to increase the resistance performance, but they are inefficient in terms of economics and structural characteristics. This study is about the basic study on the fiber composite panel cover, and the nano-composite material and adhesive as the filler, to maximize the specific performance of each layer and the protection and explosion-proof performance as the composite panel component by improving the tensile strength, light weight, adhesion and fire-proof performances. The fiber composite panel cover (aramid-polyester ratios of 6:4 and 6.5:3.5) had a 2,348 MPa maximum tensile strength and a 1.8% maximum elongation. The filler that contained the nano-composite material and adhesive had a 4 MPa maximum tensile shear adhesive strength. In addition, the nano-composite filler was 30% lighter than the normal portland cement