• Title/Summary/Keyword: fire monitoring

Search Result 394, Processing Time 0.022 seconds

R&D Monitoring and Novel Technology Exploration Concerning Research Area about Fire in High-rise Building (고층 건물 화재 관련 R&D 위상 분석 및 신기술 탐색 연구)

  • Shim, We;Choi, Jaekyung;Chung, Hyunsang;Heo, Yoseob;Seo, Seongho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.271-280
    • /
    • 2020
  • Due to the development of the urban economy, high-density buildings and skyscrapers have continued to increase in order to alleviate high population densities and to make efficient use of urban space. However, a fire in a high-rise building is a disaster that can lead to massive casualties and property damage because of the difficulty of firefighting and escaping. Various studies have been conducted on these high-rise buildings because they are sympathetic to these difficulties all over the world. In this paper, trends of researches and technologies related to fire in high-rise buildings are analyzed synthetically through thesis and patent data. In other words, we explored the trends of various studies that have been carried out so far through the thesis, and performed technical monitoring on actual implemented technology and newly implemented technologies through patent data. Through this research, we have studied the present and the future of technology for high-rise building fire.

A Basic Study on the Fire Flame Extraction of Non-Residential Facilities Based on Core Object Extraction (핵심 객체 추출에 기반한 비주거 시설의 화재불꽃 추출에 관한 기초 연구)

  • Park, Changmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.71-79
    • /
    • 2017
  • Recently, Fire watching and dangerous substances monitoring system has been being developed to enhance various fire related security. It is generally assumed that fire flame extraction plays a very important role on this monitoring system. In this study, we propose the fire flame extraction method of Non-Residential Facilities based on core object extraction in image. A core object is defined as a comparatively large object at center of the image. First of all, an input image and its decreased resolution image are segmented. Segmented regions are classified as the outer or the inner region. The outer region is adjacent to boundaries of the image and the rest is not. Then core object regions and core background regions are selected from the inner region and the outer region, respectively. Core object regions are the representative regions for the object and are selected by using the information about the region size and location. Each inner region is classified into foreground or background region by comparing its values of a color histogram intersection of the inner region against the core object region and the core background region. Finally, the extracted core object region is determined as fire flame object in the image. Through experiments, we find that to provide a basic measures can respond effectively and quickly to fire in non-residential facilities.

Smart Fire Fighting Appliances Monitoring System using GS1 based on Big Data Analytics Platform (GS1을 활용한 빅데이터 분석 플랫폼 기반의 스마트 소화기구 모니터링 시스템)

  • Park, Heum
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.57-68
    • /
    • 2018
  • This paper presents a smart firefighting appliances monitoring system based on big data analytics platform using GS1 for Smart City. Typical firefighting appliances are fire hydrant, fire extinguisher, fire alarm, sprinkler, fire engine, etc. for the fire of classes A/B/C/D/E. Among them, the dry chemical fire extinguisher have been widely supplied and 6 millions ones were replaced for the aging ones over 10 years in the past year. However, only 5% of them have been collected for recycling of chemical materials included the heavy metals of environment pollution. Therefore, we considered the trace of firefighting appliances from production to disposal for the public open service. In the paper, we suggest 1) a smart firefighting appliances system using GS1, 2) a big data analytics platform and 3) a public open service and visualization with the analyzed information, for fire extinguishers from production to disposal. It can give the information and the visualized diagrams with the analyzed data through the public open service and the free Apps.

A Study on the design of Unmanned Autonomous Helicopter for Aerial Monitoring and Control of a Large Size Disaster and Forest Fire (대형재난 및 산불 공중지휘통제용 무인자율헬기 개발에 관한연구)

  • Kim, Jong-Kwon;Kwark, Ji-Hyun;Son, Bong-Sei
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.105-110
    • /
    • 2008
  • Unmanned helicopter has several abilities such as vertical take off, hovering, low speed flight at a specific altitude. Such vehicles are becoming popular in actual applications such as search and rescue, aerial reconnaissance and surveillance in the case of a large size disaster and forest fire. In this paper, a flight control system was designed for an unmanned helicopter. This paper was concentrated on describing the systematic design, electronic equipments and their interconnections for realizing the autonomous flight and aerial monitoring. A study on the autonomous waypoint navigation and altitude control performance were performed and tested on a test unmanned helicopter and the performance and the feasibility were represented.

  • PDF

Unattended fire detection system using a wireless communication device (무선통신 단말기를 이용한 무인화재 감지시스템)

  • Chang, Rak-Ju;Lee, Soon-Yi;Kang, Suk-Won
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.25-26
    • /
    • 2015
  • The Unattended fire detection system using a wireless communication device is designed in this paper. If a fire occurs in some area, the system can detect and automatically extinguish the fire. The major functions for the system are: Unattended detection system for fire based on wireless communication system and Automatic extinguish device system; Thermal imaging camera and video camera system; Monitoring viewer and map viewer system.

  • PDF

Integrated Fire Monitoring System Based on Wireless Multi-Hop Sensor Network and Mobile Robot (무선 멀티 홉 센서 네트워크와 이동로봇을 이용한 통합 화재 감시 시스템)

  • Kim, Tae-Hyoung;Seo, Gang-Lae;Lee, Jae-Yeon;Lee, Won-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.114-119
    • /
    • 2010
  • Network technology has been developed rapidly for digital service in these days. ZigBee, one of the IEEE 802.15.4 protocols, supporting local communication has become the core technology in the wireless network area. In this paper we designed an integrated fire monitoring system using a mobile robot and the ZigBee sensor nodes which are deployed to monitor fires. When a fire breaks out, the image information of the scene of a fire is transmitted by an autonomous mobile robot and we also monitor the current position of the robot. Furthermore, the data around the place where the fire breaks out and the positions of the sensor nodes can be transmitted to a server via the multi-hop communication in the real time.

A Plan of Existing System Interface within Station (역사내 기존 시스템 인터페이스 방안)

  • Lee, Won-Jae;An, Tae-Ki;Shin, Jeong-Ryol
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1550-1555
    • /
    • 2011
  • This paper presents the system interface standard that are associated with additional devices like sensor nodes as well as fire monitoring panel, panic button and emergency call in city railroad environment. Existing fire monitoring panel, panic button and emergency call system is responsible for fire detection and alarm, emergency alarm and communication with the manager. Recently, researches that are associated with NVR-based intelligent integrated surveillance systems and existing alarm system are activated but most of the system is dedicated to it existing. In order to expand devices that is supported other monitoring function, separate device configuration or modification of integrated surveillance system are inevitable. In this study, interface standard between standard controller, integrated command center and each device that facilitate additional expansion of integrated surveillance system and avoid the extra cost is presented.

  • PDF

Realtime Wireless Sensor Line Protocol for Forest Fire Monitoring System (실시간 센서 네트워크 프로토콜을 이용한 산불 모니터링 시스템의 구현)

  • Kim, Jae-Ho;Lee, Sang-Shin;Ahn, Il-Yeup;Kim, Tae-Hyun;Won, Kwang-Ho;Kim, Seong-Dong
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1031-1034
    • /
    • 2005
  • This paper introduces a novel sensor network protocol, R-WSLP(Realtime Wireless Sensor Line Protocol), which has extremely low latency characteristic in large-scale WSN. R-WSLP is proposed to implement realtime forest fire monitoring system. We propose Distributed TDMA method for the multiple channel access and Time Synchronized Forwarding Mechanism instead of routing technique to achieve low latency network. Also, R-WSLP provides extremely low power operation which we accomplished by reducing idle listening. In our experimentation, we get successful results at the forest fire monitoring system with our protocol.

  • PDF

Implementation of a Inference based Intelligent Distribution Panel System for Prevention and fast Detection of fire caused by Electricity (전기화재 예방과 신속 감지를 위한 추론기반 지능형 수배전반 시스템 구현 연구)

  • Park, Chan-Eom;Kim, Kyung-Dong;Lee, Seung-Chul;Yang, Won-Young
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.82-85
    • /
    • 2006
  • With the fast growing number of skyscrapers and large ultrahigh apartment complexes, the concerns on fire caused by electricity also grow. Among about 30,000 fires recorded annually, roughly one third of them are hewn to be caused by electricity. If one of such high and densely populated buildings or apartments catches a fire, the consequence can potentially be quite catastrophic. However, with the rapid development of the techniques in the fields of communications and computers, electric power distribution systems for such buildings and apartments have been largely digitalized in recent years. More detailed informations on the operating status are now available, which enables more sophisticated monitoring and early detection of potential fire caused by electricity. In this paper, we present an inference technique that can be used as one of the basic techniques in building intelligent distribution panel systems that can effectively monitor, prevent and detect the occurrence of fire caused by electricity. The technique can accommodate production rules in linguistic expressions on high abstraction levels. Fire finding strategies can be easily modified to provide more effective countermeasures. Simulation results show that inference capabilities and thus the capability of fire monitoring in power distribution panel systems can be significantly enhanced with our approach.

  • PDF

Development of Monitoring RF System on Leakage of Gas Cylinder in Gaseous Fire Extinguishing System (가스계 소화시스템용 소화약제 저장용기 누설 검출 무선 시스템 개발)

  • So, Soo-Hyun;Oh, Ju-Hwan;Cha, Cheol-Woong;Lee, Dae-Kuen
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.7-10
    • /
    • 2008
  • In our study, Monitoring RF System in real-time on leakage of gas cylinder is developed. The system is consisted of Pressure Transmitting part, Main Controller and Operating program. The pressure data of gas cylinder are transmitted to the modem of main controller part by RF module of Pressure Transmitting part and the data received through the modem are recorded in real-time and showed the situation of gas cylinder on the PC monitor. Through the test on the case of the artificial pressure-reduction, the detecting performance. of the developed system is conformed.

  • PDF