• Title/Summary/Keyword: fire monitoring

Search Result 396, Processing Time 0.025 seconds

The Study of Optimized Combustion Tuning Method for Fossil Power Plant (발전용 보일러의 최적연소조정기법에 대한 실험적 연구)

  • Jung, Jae-Jin;Song, Jung-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.45-52
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for $NO_x$ controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2,\;NO_x$ and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective rear pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing $NO_x$ emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

Finding Isolated Zones through Connectivity Relationship Analysis in Indoor Space (실내공간의 연결성 분석을 통한 고립지역 탐색)

  • Lee, Seul-Ji;Lee, Ji-Yeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.229-240
    • /
    • 2012
  • In Korea, u-City has been constructed as IT-based new city with introduction of the ubiquitous concept. However, most currently provided u-services are just monitoring services based on the USN(Ubiquitous Sensor Network) technology, so spatial analysis is insufficient. Especially, buildings have been rapidly constructed and expanded in multi-levels, and people spend a lot of time in indoor space, so indoor spatial analysis is necessary. Therefore, connectivity relationship in indoor space is analyzed using the topological data model. Topological relationships could be redefined due to the dynamic changes of environment in indoor space, and changes could have an effect on analysis results. In this paper, the algorithms of finding isolated zones is developed by analyzing connectivity relationship between space objects in built-environments after changes of environment in indoor space due to specific situation such as fire. And the system that visualizes isolated zones as well as three-dimensional data structure of indoor space is developed to get the analysis result by using the analysis algorithms.

Design of Smart Digital Door Lock System Using Heterogeneous Communication (이종 통신을 이용한 스마트 디지털 도어락 시스템 설계)

  • Han, Yong-Sik;Cho, Hyun-Chul;Park, Jin-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 2018
  • In this paper, we propose smart digital door lock system using heterogeneous communication. This system has efficient function using RF communication and Internet communication, and realizes access and real image of the passengers by combining camera control technology to secure original competitiveness with existing products. It uses the Internet of things and receive images to and from your smart-phone. And senses human behavior. In the simulated results, the image transmission rate of 90 % or more and the time required to transmit 10,000 images have an average transmission speed of 3 seconds. It is expected to secure competitiveness to increase the security of door lock in the future by enabling minimum security and fire monitoring service in real time.

Design and Implementation of a Small Server Room Environment Monitoring System by Using the Arduino (아두이노를 이용한 소규모 서버 룸 환경 모니터링 시스템의 설계 및 구현)

  • Lee, Hyo-Seung;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.2
    • /
    • pp.385-390
    • /
    • 2017
  • Owing to the development of IT technology, a computerized system in various ways such as a variety of company's businesses, factory automation system and hospital healthcare system is introduced and operated. And it is possible to say that a computer system is more important than anything else to the extent that all businesses are suspended in case the system is down. Attention should be always paid to environmental management such as temperature, humidity and fire in server room for the normal operation of system in this situation. It is thought that there is necessity for a low-cost system which independently monitors environment round the clock in the situation where the person in charge doesn't pay attention and which informs a person in charge in real time when an event occurs for the operation of this small server room. Consequently, it is to be hoped that the suspension of service provided by computer system, which may occur due to a specific event, can be prevented.

Clustering Algorithm for Efficient Energy Consumption in Wireless Sensor Networks (무선 센서 네트워크에서 효율적인 에너지 사용을 위한 클러스터링 알고리즘)

  • Na, Sung-Won;Choi, Seung-Kwon;Lee, Tae-Woo;Cho, Yong-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.6
    • /
    • pp.49-59
    • /
    • 2014
  • Recently, wireless sensor networks(WSNs) are widely used for intrusion detection and ecology, environment, atmosphere, industry, traffic, fire monitoring. In this paper, an energy efficient clustering algorithm is proposed. The proposed algorithm forms clusters uniformly by selecting cluster head that optimally located based on receiving power. Besides, proposed algorithm can induce uniform energy consumption regardless of location of nodes by multi-hop transmission and MST formation with limited maximum depth. Through the above, proposed algorithm elongates network life time, reduces energy consumption of nodes and induces fair energy consumption compared to conventional LEACH and HEED. The results of simulation show that the proposed clustering algorithm elongates network life time through fair energy consumption.

Thermal Packaging for Firefighters' Personal Protective Elctronic Equipments (소방대원 개인보호용 전자장비 패키징 기술개발)

  • Park, Woo-Tae;Jeon, Jiwon;Choi, Han Tak;Woo, Hee Kwon;Woo, Deokha;Lee, Sangyoup
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.319-325
    • /
    • 2015
  • While the conventional personal protective equipments (PPEs) covers a variety of devices and garments such as respirators, turnout gear, gloves, blankets and gas masks, several electronic devices such as personal alert safety system (PASS) and heads-up displays in the facepiece have become a part of firefighters personal protective equipments through past several years. Furthermore, more advanced electronic sensors including location traking sensor, thermal imaging caerma, toxic gas detectors, and even physiological monitoring sensors are being integrated into ensemble elements for better protection of firefighters from fire sites. Despite any electronic equipment placed on the firefighter must withstand environmental extremes and continue to properly function under any thermal conditions that firefighters routinely face, there are no specific criteria for these electronics to define functionability of these devices under given thermal conditions. Although manufacturers provide the specifications and performance guidelines for their products, their operation guidelines hardly match the real thermal conditions. Present study overviews firefighter's fatalities and thermal conditions that firefighters and their equipments face. Lastly, thermal packaging methods that we have developed and tested are introduced.

A Plan for Construction of the National Electrical Safety Grid to Prevent the Fires Caused by Electrical Faults (전기화재 예방을 위한 국가전기안전망 구축 방안)

  • Bae, Seok-Myeong;Jeon, Jeong-Chay;Park, Chan-Eom;Bae, Seok-Myeong;Ko, Won-Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2267-2273
    • /
    • 2009
  • In this paper, in order to monitor and manage an electrical risk factor like as leakage current, load current, and arc-fault, a real time monitoring and management system being operated in the ubiquitous environment was developed, and a plan of construction of an electrical safety grid using the system was proposed. For confirmation of usefulness and reliability of the proposed safety system and grid, the developed intelligent panels were applied to 28 Korean traditional houses in Jeonjoo city, and the grid including the panels was operated. If the proposed National Electrical Safety Grid is completely constructed in the houses of general electrical users, the Grid will have an effect on that a main manager on electrical safety transfers from management system by general people to real-time management system by expert. As a result, the electrical fires caused by an over-load, an arc-fault, and an earth-fault will be prevented.

Performance-based and damage assessment of SFRP retrofitted multi-storey timber buildings

  • Vahedian, Abbas;Mahini, Seyed Saeed;Glencross-Grant, Rex
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.269-282
    • /
    • 2015
  • Civil structures should be designed with the lowest cost and longest lifetime possible and without service failure. The efficient and sustainable use of materials in building design and construction has always been at the forefront for civil engineers and environmentalists. Timber is one of the best contenders for these purposes particularly in terms of aesthetics; fire protection; strength-to-weight ratio; acoustic properties and seismic resistance. In recent years, timber has been used in commercial and taller buildings due to these significant advantages. It should be noted that, since the launch of the modern building standards and codes, a number of different structural systems have been developed to stabilise steel or concrete multistorey buildings, however, structural analysis of high-rise and multi-storey timber frame buildings subjected to lateral loads has not yet been fully understood. Additionally, timber degradation can occur as a result of biological decay of the elements and overloading that can result in structural damage. In such structures, the deficient members and joints require strengthening in order to satisfy new code requirements; determine acceptable level of safety; and avoid brittle failure following earthquake actions. This paper investigates performance assessment and damage assessment of older multi-storey timber buildings. One approach is to retrofit the beams in order to increase the ductility of the frame. Experimental studies indicate that Sprayed Fibre Reinforced Polymer (SFRP) repairing/retrofitting not only updates the integrity of the joint, but also increases its strength; stiffness; and ductility in such a way that the joint remains elastic. Non-linear finite element analysis ('pushover') is carried out to study the behaviour of the structure subjected to simulated gravity and lateral loads. A new global index is re-assessed for damage assessment of the plain and SFRP-retrofitted frames using capacity curves obtained from pushover analysis. This study shows that the proposed method is suitable for structural damage assessment of aged timber buildings. Also SFRP retrofitting can potentially improve the performance and load carrying capacity of the structure.

Estimation of High-Resolution Soil Moisture based on Sentinel-1A/B SAR Sensors (Sentinel-1A/B SAR 센서 기반 고해상도 토양수분 산정)

  • Kim, Sangwoo;Lee, Taehwa;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.5
    • /
    • pp.89-99
    • /
    • 2019
  • In this study, we estimated the spatially-distributed soil moisture at the high resolution ($10m{\times}10m$) using the satellite-based Sentinel-1A/B SAR (Synthetic Aperture Radar) sensor images. The Sentinel-1A/B raw data were pre-processed using the SNAP (Sentinel Application Platform) tool provided from ESA (European Space Agency), and then the pre-processed data were converted to the backscatter coefficients. The regression equations were derived based on the relationships between the TDR (Time Domain Reflectometry)-based soil moisture measurements and the converted backscatter coefficients. The TDR measurements from the 51 RDA (Rural Development Administration) monitoring sites were used to derive the regression equations. Then, the soil moisture values were estimated using the derived regression equations with the input data of Sentinel-1A/B based backscatter coefficients. Overall, the soil moisture estimates showed the linear trends compared to the TDR measurements with the high Pearson's correlations (more than 0.7). The Sentinel-1A/B based soil moisture values matched well with the TDR measurements with various land surface conditions (bare soil, crop, forest, and urban), especially for bare soil (R: 0.885~0.910 and RMSE: 3.162~4.609). However, the Mandae-ri (forest) and Taean-eup (urban) sites showed the negative correlations with the TDR measurements. These uncertainties might be due to limitations of soil surface penetration depths of SAR sensors and complicated land surface conditions (artificial constructions near the TDR site) at urban regions. These results may infer that qualities of Sentinel-1A/B based soil moisture products are dependent on land surface conditions. Although uncertainties exist, the Sentinel-1A/B based high-resolution soil moisture products could be useful in various areas (hydrology, agriculture, drought, flood, wild fire, etc.).

Comparison of the Machine Learning Models Predicting Lithium-ion Battery Capacity for Remaining Useful Life Estimation (리튬이온 배터리 수명추정을 위한 용량예측 머신러닝 모델의 성능 비교)

  • Yoo, Sangwoo;Shin, Yongbeom;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.91-97
    • /
    • 2020
  • Lithium-ion batteries (LIBs) have a longer lifespan, higher energy density, and lower self-discharge rates than other batteries, therefore, they are preferred as an Energy Storage System (ESS). However, during years 2017-2019, 28 ESS fire accidents occurred in Korea, and accurate capacity estimation of LIB is essential to ensure safety and reliability during operations. In this study, data-driven modeling that predicts capacity changes according to the charging cycle of LIB was conducted, and developed models were compared their performance for the selection of the optimal machine learning model, which includes the Decision Tree, Ensemble Learning Method, Support Vector Regression, and Gaussian Process Regression (GPR). For model training, lithium battery test data provided by NASA was used, and GPR showed the best prediction performance. Based on this study, we will develop an enhanced LIB capacity prediction and remaining useful life estimation model through additional data training, and improve the performance of anomaly detection and monitoring during operations, enabling safe and stable ESS operations.