• Title/Summary/Keyword: fire element analysis

Search Result 213, Processing Time 0.029 seconds

Modeling fire performance of externally prestressed steel-concrete composite beams

  • Zhou, Huanting;Li, Shaoyuan;Zhang, Chao;Naser, M.Z.
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.625-636
    • /
    • 2021
  • This paper examines the fire performance of uninsulated and uncoated restrained steel-concrete composite beams supplemented with externally prestressed strands through advanced numerical simulation. In this work, a sequentially coupled thermo-mechanical analysis is carried out using ABAQUS. This analysis utilizes a highly nonlinear three-dimensional finite element (FE) model that is specifically developed and validated using full-sized specimens tested in a companion fire testing program. The developed FE model accounts for nonlinearities arising from geometric features and material properties, as well as complexities resulting from prestressing systems, fire conditions, and mechanical loadings. Four factors are of interest to this work including effect of restraints (axial vs. rotational), degree of stiffness of restraints, the configuration of external prestressed tendons, and magnitude of applied loading. The outcome of this analysis demonstrates how the prestressing force in the external tendons is primarily governed by the magnitude of applied loading and experienced temperature level. Interestingly, these results also show that the stiffness of axial restraints has a minor influence on the failure of restrained and prestressed steel-concrete composite beams. When the axial restraint ratio does not exceed 0.5, the critical deflection of the composite beam is lower than that of the composite beam with a restraint ratio of 1.0.

A Study on Structural Analysis for Stability Evaluation According to Design Parameters of a Fire Ladder Vehicle (소방 고가사다리차의 설계 변수에 따른 안정성 평가를 위한 구조해석 연구)

  • Jung, Hoon;Kim, Cheol-Jung;Kim, Hong-Gun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.64-72
    • /
    • 2020
  • In this study, a stability analysis was conducted through finite element analysis (FEA) of a simplified model of a fire ladder truck by changing the ascending angle, turning angle, and boundary conditions between the outrigger and the ground. The results of the analysis showed that decreasing the angle of the ladder car increases the moment due to the ladder weight, decreasing the safety factor despite being under the same load conditions. In the case of a rotating radius, the stability was found to vary depending on the boundary conditions. A comparative analysis in the future with these results and the experimental values from the actual fire ladder truck may determine the most appropriate boundary conditions based on the analysis program. It is expected to predict the risk of damage and rollover by assessing the stability of aerial ladder vehicles under different conditions.

The thermal conductivity interpretation of the Concrete using Galerkin finite element method (갤러킨 유한요소해석 방법을 이용한 콘크리트의 열전도해석)

  • Lee, Kyu-Min;Seo, Dong-Goo;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.169-170
    • /
    • 2014
  • In this study, a general strength concrete member is produced and its hydrothermal temperature is measured. It is intended to present the basic data for establishment of fire resistance performance assessment and review of safety against fire by comparing the data values of slab fire resistance experiment and the numerical analysis model. The value obtained by measuring the hydrothermal temperature of the concrete after heating the concrete designed to have general strength (30 Mpa) for 3 hours in accordance with the ISO 834 Heating Curve is compared with the value obtained from a thermal conduction analysis. As a result of the comparison, though there is a little difference, it is thought that fire behaviors can be predicted in the future if the movement of moisture and the added evaporation speed are taken into account.

  • PDF

A Study on the Causal Analysis of Electrical Fire by Using Fuse (퓨즈를 이용한 전기화재의 원인분석에 관한 연구)

  • Lee, Chun-Ha;Kim, Shi-Kuk;Ok, Kyung-Jae
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.24-28
    • /
    • 2008
  • This paper studied on the causal analysis of electrical fire by using fuse that it is used with safety device in electrical products. The experimental samples used are glass tube fuse(15 A, $5{\times}20mm$) and temperature fuse(10 A, $72^{\circ}C$). The experiment analyzed on the characteristics of damaged fuse by main causes(short circuit, overload, external flame) of electrical fire. The results showed, in case of glass tube fuse identified different characteristics in external form and element surface and element texture of damaged fuse by main causes of electrical fire. In case of temperature fuse identified different characteristics in external form and sliding contact surface and sliding contact texture of damaged fuse only by external flame.

Numerical analysis on the behaviour of reinforced concrete frame structures in fire

  • Dzolev, Igor M.;Cvetkovska, Meri J.;Ladinovic, Dorde Z.;Radonjanin, Vlastimir S.
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.637-647
    • /
    • 2018
  • Numerical approach using finite element method has been used to evaluate the behaviour of reinforced concrete frame structure subjected to fire. The structure is previously designed in accordance with Eurocode standards for the design of structures for earthquake resistance, for the ductility class M. Thermal and structural response are obtained using a commercially available software ANSYS. Temperature-dependent nonlinear thermal and mechanical properties are adopted according to Eurocode standards, with the application of constitutive model for the triaxial behaviour of concrete with a smeared crack approach. Discrete modelling of concrete and reinforcement has enabled monitoring of the behaviour at a global, as well as at a local level, providing information on the level of damage occurring during fire. Critical regions in frame structures are identified and assessed, based on temperatures, displacements, variations of internal forces magnitudes and achieved plastic deformations of main reinforcement bars. Parametric analyses are conducted for different fire scenarios and different types of concrete aggregate to determine their effect on global deformations of frame structures. According to analyses results, the three-dimensional finite element model can be used to evaluate the insulation and mechanical resistance criteria of reinforced concrete frame structures subjected to nominal fire curves.

Analysis of a damaged industrial hall subjected to the effects of fire

  • Kmet, Stanislav;Tomko, Michal;Demjan, Ivo;Pesek, Ladislav;Priganc, Sergej
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.757-781
    • /
    • 2016
  • The results of diagnostics and analysis of an industrial hall located on the premises of a thermal power plant severely damaged by fire are presented in the paper. The comprehensive failure-related diagnostics, non-destructive and destructive tests of steel and concrete materials, geodetic surveying of selected structural members, numerical modelling, static analysis and reliability assessment were focused on two basic goals: The determination of the current technical condition of the load bearing structure and the assessment of its post fire resistance as well as assessing the degree of damage and subsequent design of reconstruction measures and arrangements which would enable the safe and reliable use of the building. The current mechanical properties of the steel material obtained from the tests and measured geometric characteristics of the structural members with imperfections were employed in finite element models to study the post-fire behaviour of the structure. In order to compare the behaviour of the numerically modelled steel roof truss, subjected to the effects of fire, with the real post-fire response of the damaged structure theoretically obtained resistance, critical temperature and the time at which the structure no longer meets the required reliability criteria under its given loading are compared with real values. A very good agreement between the simulated results and real characteristics of the structure after the fire was observed.

A Study on the Displacements-Thermal Stress Analysis of Smoke/Heat Interception Screen in Eire Door (방화문용 연기/열 차단막의 변위-열응력 해석에 관한 연구)

  • 이동명
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.73-78
    • /
    • 2004
  • This study investigated about smoke/heat interception screen that can protect underneath of fire door and floor when occur fire, and keep out leakage or diffusion of smoke/heat. In this study, to considered differential pressure form smoke control area and mechanical force by fluid buoyancy of smoke when occur fire and stream of heat, are analyzed to used $ANSYS^{\circledR}$ of finite element analysis code. It presented direction of optimal design of smoke/heat interception screens that can minimize loading condition from study results, and helped that construct basic engineering data of smoke/heat interception systems as that utilize its shape design of smoke/heat interception screens.

Numerical study on fire resistance of cyclically-damaged steel-concrete composite beam-to-column joints

  • Ye, Zhongnan;Heidarpour, Amin;Jiang, Shouchao;Li, Yingchao;Li, Guoqiang
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.673-688
    • /
    • 2022
  • Post-earthquake fire is a major threat since most structures are designed allowing some damage during strong earthquakes, which will expose a more vulnerable structure to post-earthquake fire compared to an intact structure. A series of experimental research on steel-concrete composite beam-to-column joints subjected to fire after cyclic loading has been carried out and a clear reduction of fire resistance due to the partial damage caused by cyclic loading was observed. In this paper, by using ABAQUS a robust finite element model is developed for exploring the performance of steel-concrete composite joints in post-earthquake fire scenarios. After validation of these models with the previously conducted experimental results, a comprehensive numerical analysis is performed, allowing influential parameters affecting the post-earthquake fire behavior of the steel-concrete composite joints to be identified. Specifically, the level of pre-damage induced by cyclic loading is regraded to deteriorate mechanical and thermal properties of concrete, material properties of steel, and thickness of the fire protection layer. It is found that the ultimate temperature of the joint is affected by the load ratio while fire-resistant duration is relevant to the heating rate, both of which change due to the damage induced by the cyclic loading.