• Title/Summary/Keyword: fire curves

Search Result 74, Processing Time 0.028 seconds

Analysis of Dispersion Characteristics of Guided Waves in Rails (레일 초음파의 분산 특성 해석)

  • Kang, Bu-Byoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1257-1264
    • /
    • 2011
  • Guided ultrasonic waves propagating over long distances within a short period provide a fast long-range inspection method. However, structures with arbitrary cross-sections, such as rails, have complicated dispersion characteristics that make analysis of the ultrasonic signal difficult. Therefore, an understanding of the characteristics of the propagating waves in rails is important for the creation of a reliable and practical inspection system using guided waves. In particular, it is necessary to investigate the dispersion characteristics of the guided waves. This paper introduces a method for the calculation of the dispersion curves of KS60 rails by adopting a SAFE method, and discusses the possibility of using guided waves as a technique for rail inspection.

Semi-rigid connection modeling for steel frameworks

  • Liu, Yuxin
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.431-457
    • /
    • 2010
  • This article provides a discussion of the mathematic modeling of connections for designing and qualifying structures, systems, and components subject to monotonic or cyclic loading. To characterize the force-deformation behavior of connections under monotonic loading, a review of the Ramberg-Osgood, Richard-Abbott, and Menegotto-Pinto models is conducted, and it is shown that these nonlinear functions can be mathematically derived by scaling up or down a linear force-deformation function. A generalized four-parameter model for simulating connection behavior is investigated to facilitate nonlinear regression analysis. In order to perform seismic analysis of frameworks, a hysteretic model accounting for loading, unloading, and reloading is described using the established monotonic model. For preliminary analysis, a method is provided to quickly determine the model parameters that fit approximately with the observed data. To reach more accurate values of the parameters, the methods of nonlinear regression analysis are investigated and the modified Levenberg-Marquardt and separable nonlinear least-square algorithms are applied in determining the model parameters. Example case studies illustrate the procedure for the computation through the use of experimental/analytical data taken form the literature. Transformation of connection curves from the three-parameter model to the four-parameter model for structural analysis is conducted based on the modeling of connections subject to fire.

Concept Design of a Parallel-type Tuned Mass Damper - Tuned Sloshing Damper System for Building Motion Control in Wind

  • Lee, Chien-Shen;Love, J. Shayne;Haskett, Trevor C.;Robinson, Jamieson K.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.2
    • /
    • pp.93-97
    • /
    • 2021
  • Supplementary damping systems, such as tuned mass dampers (TMDs) and tuned sloshing dampers (TSDs) - also known as tuned liquid dampers (TLDs) - have been successfully employed to reduce building motion during wind events. A design of a damping system consisting of a TMD and two TSDs performing in unison has been developed for a tall building in Taiwan to reduce wind-induced motion. The architecturally exposed TMD will also be featured as a tourist attraction. The dual-purpose TSD tanks will perform as fire suppression water storage tanks. Linearized equivalent mechanical TSD and TMD models are coupled to the structure to simulate the multi-degree of freedom system response. Frequency response curves for the structure with and without the damping system are created to evaluate the performance of the damping system. The performance of the combined TMD-TSD system is evaluated against a conventional TMD system by computing the effective damping produced by each system. The proposed system is found to have superior performance in acceleration reduction. The combined TMD-TSD system is an effective and affordable means to reduce the wind-induced resonant response of tall buildings.

Evaluation of Ammonia Adsorption Capacity Using Various Metal Ion-Exchanged Zeolitic Materials Synthesized from Coal Fly Ash (금속 이온이 교환된 석탄 비산재 유래 합성 제올라이트 물질의 암모니아 흡착성능 평가 )

  • Jong-Won Park;Joo-Young Kwak;Chang-Han Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.343-353
    • /
    • 2023
  • A zeolite material (ZCH) was synthesized from coal fly ash in an HD thermal power plant using a fusion/hydrothermal method. ZCH with high crystallinity could be synthesized at the NaOH/CFA ratio of 0.9. Ion-exchanged ZCH adsorbents for ammonia removal were prepared by ion-exchanging various cation (Cu2+, Co2+, Fe3+, and Mn2+) on the ZCH. They were used to evaluate the ammonia adsorption breakthrough curves and adsorption capacities. The ammonia adsorption capacities of the ZCH and ion-exchanged ZCHs were high in the order of Mn-ZCH > Cu-ZCH ≅ Co-ZCH > Fe-ZCH > ZCH according to NH3-TPD measurements. Mn-ZCH ion-exchanged with Mn has more Brønsted acid sites than other adsorbents. The ion-exchanged Cu2+, Co2+, Fe3+, or Mn2+ ions uniformly distributed on the surface or in the pores of the ZCH, and the number of acidic sites increased on the alumina sites to form the crystal structure of zeolite material. Therefore, when the ion-exchanged ZCH was used, the adsorption capacity for ammonia gas increased.

Studies on the Press Drying and the Chemical Absorption of the Plywood Treated with Diammonium Phosphate (제2인산(第2燐酸)암모늄 처리합판(處理合板)의 약제흡수(藥劑吸收) 및 열판건조(熱板乾燥)에 관(關)한 연구(硏究))

  • Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.39-45
    • /
    • 1995
  • The plywoods commonly used as decorative interior materials for the construction are inflammable and so it is a causative factor for making fire accidents, resulting in the destruction of human life and personal properties. Indeed, it is, therefore, required to produce fire-retardant plywoods. In this study, a special grade of defect-free, Kapur plywood was used. Specimens were cut into 3- by 20cm dimensions from 120- by 240- by 0.33-cm panels(thin panel) or 120- by 240- by 0.5-cm panels(thick panel). Some specimens were treated with diammonium phosphate(DAP), but some were not treated with diammonium phosphate to use as control panels. Chemical absorption, drying curves, drying rates and dynamic Young's modulus were investigated. The results were summaries as follows; 1. The specimens were soaked into 19% diammonium phosphate solution by a full cell pressure process and the diammonium phosphate retained in the thin and thick plywoods was 1.409kg/$(30cm)^3$, 1.487kg/$(30cm)^3$, respectively. 2. Diammonium phosphate-treated plywoods were redried with press-drying process at one of either condition dried on the platen($115^{\circ}C$) for a period of time or dried on the platen($50^{\circ}C$) for 3 hrs plus in a dry-oven($30^{\circ}C$) for 24 hrs. or dried on the platen($60^{\circ}C$) for 2 hrs plus in a dry-oven($30^{\circ}C$) for 24 hrs. The drying rate of treated thin specimens dried at $60^{\circ}C$ plus $30^{\circ}C$ and $115^{\circ}C$ only was found to be 0.04 %/min. and 8.53 %/min. Similarly, the drying rate of treated thick specimens were 0.03 %/min. and 6.77 %/min. respectively. 3. It was evident that highly-significantly different drying rate of treated plywoods was observed between plywood thicknesses and platen temperatures and the rate was increased by elevating the platen temperature up to $115^{\circ}C$. Based on the two-way variance analysis, highly significant drying rate was observed from the interaction between plywood thicknesses and platen temperatures. 4. After redrying, the specimens were weighed and reconditioned to a constant weight in a facility maintained temperature ($20^{\circ}C$) and relative humidity(65%) prior to test dynamic Young's modulus. The test revealed that the thin specimens dried at the platen temperature of $50^{\circ}C$, $60^{\circ}C$, $115^{\circ}C$ and untreated specimens showed 1.070E+09 dyne/$cm^2$, 1.156E+09 dyne/$cm^2$, 1.243E+09 dyne/$cm^2$, and 1.052E+09 dyne/$cm^2$, respectively. Likewise, the thick specimens revealed 5.647E+09 dyne/$cm^2$ 5.670E+09 dyne/$cm^2$, 6.395E+09 dyne/$cm^2$ and 5.415E+09 dyne/$cm^2$, respectively. 5. It was evident that significantly different dynamic Young's modulus was observed between the plywood thickness and the platen temperature, but not in the two-way interaction between the plywood thickness${\times}$the platen temperature.

  • PDF

Fire Retardant Treatment to the Plywood with Di-ammonium Phosphate [(NH4)2 HPO4](I) -Hot and Cold Soaking Treatment and Redrying of Treated Plywood by Hot Platen- (제2인산(第二燐酸) 암모늄에 의한 합판(合板)의 내화처리(耐火處理)(I) -온냉침지처리(温冷浸漬處理)와 열판(熱板)에 의한 처리합판(處理合板)의 재건조(再乾燥) -)

  • Lee, Phil Woo;Chung, Woo Yang
    • Journal of Korean Society of Forest Science
    • /
    • v.60 no.1
    • /
    • pp.30-36
    • /
    • 1983
  • Plywood, the representative interior decorative or structural material, is so inflammable that it may cause big fires. Therefore, it is required inevitably to manufacture the "Fire retardant treated plywood", and it will be a study on the redrying of treated plywood that we ought to solve. This study was carried out to investigate the absorption of 20% $(NH_4)_2HPO_4$ solution into the soaked plywoods by hot/cold soaking for 3/3, 6/3, 9/3 and 12/3 hours and to study drying process with drying curves and drying rates by press-drying at the platen temperature of 130, 145, 160 and $175^{\circ}C$. Solution absorption of plywoods in hot/cold soaking method increased steadily with the prolonged soaking time, and water absorption is higher than DAP absorption, and then chemical retention (DAP) exceeded the minimum retention [$1.125kg/(30cm)^3$] even in the shortest soaking treatment. Drying curves of water-soaked plywoods inclined more steeply than those of DAP soaked plywoods. And the drying proceeded rapidly with the increase in platen temperature and terminated in 2.5-4 minutes at the temperature of 160 and $170^{\circ}C$. Drying rate also increased generally with the increase of platen temperature. So it was at $175^{\circ}C$ in DAP-soaking and at $160^{\circ}C$ in water-soaking when the drying rate became above 10%/min.

  • PDF

Studies on Press Drying of Fire-Retardant Treated Plywood (내화처리합판(耐火處理合板)의 열판건조(熱板乾燥)에 관(關)한 연구(硏究))

  • Kim, Jong Man
    • Journal of Korean Society of Forest Science
    • /
    • v.56 no.1
    • /
    • pp.1-25
    • /
    • 1982
  • Plywood used for construction as a decorative inner material is inflammable and can cause fire accidents. causing destruction of human life and property. To diminish the fire disaster, fire retardant plywood is indeed required. In the methods of manufacturing the fire retardant plywood, a soaking method is occasionally used. However after soaking plywood into fire retardant chemical solutions redrying of soaked plywood is of the utmost importance. In this study 3.5mm and 5.0mm thickness plywoods were selected for fire retardant treatment. Treating solutions were prepared for 20% dilute solutions of ammonium sulfate, monoammonium phosphate, diammonium phosphate, borax-boric acid minalith, and water solution, 1-, 3-, 6-, and 9 hour-soaking treatments in borax-boric acid and minalith, and 6- and 9 hours in the other chemicals were applied and after the treatment hot drying was applied to treated plywoods at $90^{\circ}C$, $120^{\circ}C$ and $150^{\circ}C$ of press temperature. Drying rates, drying curves, water absorption rates of fire retardant chemicals, weight per volume and fire retardant degree of plywood were investigated. The results may be summarized as follows: 1) In the 9 hours-soaking treatment of fire retardants by hot and cold bath method, the chemical retentions of 3.5mm thickness plywood could be attained within the range ($1.125-2.25kg/(30cm)^3$) of minimum retention specification as follows: $1.353kg/(30cm)^3$ in monoammonium phosphate, $1.331kg/(30cm)^3$ in diammonium phosphate, $1.263kg/(30cm)^3$ in ammonium sulfate, $1.226kg/(30cm)^3$ in borax-boric acid. But the chemical retention, $0.906kg/(30cm)^3$, in minalith could not be attained within the range of minimum retention specification. And also in case of 5.0mm thickness plywood, chemical retentions, as $1.356kg/(30cm)^3$ and $1.166kg/(30cm)^3$ respectively, of ammonium sulfate and diammonium phosphate could be attained within the range minimum retention specification, but the other fire retardant chemicals could not. 2) In the 6- and - hours-soaking treatments of 3.5mm and 5.0mm thickness plywood, the drying curve sloped of chemical treated plywood was smaller than that of water treated. The drying rate related to thickness of treated plywood, was about three times as fast in 3.5mm thickness plywood compared with 5.0mm thickness plywood. 3) In the treatment at $120^{\circ}C$ of hot platen temperature, the drying rates of chemical-treated plywood showed the highest quantity in diammonium phosphate of 3.5mm and 5.0mm thickness plywood. But the drying rate of water treated plywood was highest during the 6- and 9 hours-soaking treatments. 4) The drying rate remarkably increased with proportion to increase of the platen temperature, and the values were respectively 1.23%/min., 6.54%/min., 25.75%/min. in hot platen temperature of $90^{\circ}C$, $120^{\circ}C$, $150^{\circ}C$ in 3.5mm thickness plywood and 0.55%.min., 2.49%/min., 8.19%/min. in hot platen temperature of $90^{\circ}C$, $120^{\circ}C$, $150^{\circ}C$ in 5.0mm thickness plywood. 5) In the fire retardant degree of chemical treated plywood, the loss in weight was the smallest in diammonium phosphate, next was in monoammonium phosphate and ammonium sulfate, and the greatest was in borax-boric acid and minalith. And the fire-retardant effect in burning time, flame-exhausted time and carbonized area were greatest in diammouniun phosphate, next were in monoammonium phosphate and ammonium sulfate, and the weakest were in borax-boric acid and minalith.

  • PDF

THE MILLIMETER-RADIO EMISSION OF BL LACERTAE DURING TWO γ-RAY OUTBURSTS

  • Kim, Dae-Won;Trippe, Sascha;Lee, Sang-Sung;Park, Jong-Ho;Kim, Jae-Young;Algaba, Juan-Carlos;Hodgson, Jeffrey A.;Kino, Motoki;Zhao, Guang-Yao;Wajima, Kiyoaki;Kang, Sincheol;Oh, Junghwan;Lee, Taeseok;Byun, Do-Young;Kim, Soon-Wook;Kim, Jeong-Sook
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.6
    • /
    • pp.167-178
    • /
    • 2017
  • We present a study of the inexplicit connection between radio jet activity and ${\gamma}$-ray emission of BL Lacertae (BL Lac; 2200+420). We analyze the long-term millimeter activity of BL Lac via interferometric observations with the Korean VLBI Network (KVN) obtained at 22, 43, 86, and 129 GHz simultaneously over three years (from January 2013 to March 2016); during this time, two ${\gamma}$-ray outbursts (in November 2013 and March 2015) can be seen in ${\gamma}$-ray light curves obtained from Fermi observations. The KVN radio core is optically thick at least up to 86 GHz; there is indication that it might be optically thin at higher frequencies. To first order, the radio light curves decay exponentially over the time span covered by our observations, with decay timescales of $411{\pm}85$ days, $352{\pm}79$ days, $310{\pm}57$ days, and $283{\pm}55$ days at 22, 43, 86, and 129 GHz, respectively. Assuming synchrotron cooling, a cooling time of around one year is consistent with magnetic field strengths $B{\sim}2{\mu}T$ and electron Lorentz factors ${\gamma}$ ~ 10 000. Taking into account that our formal measurement errors include intrinsic variability and thus over-estimate the statistical uncertainties, we find that the decay timescale ${\tau}$ scales with frequency ${\nu}$ like ${\tau}{\propto}{\nu}^{-0.2}$. This relation is much shallower than the one expected from opacity effects (core shift), but in agreement with the (sub-)mm radio core being a standing recollimation shock. We do not find convincing radio flux counterparts to the ${\gamma}$-ray outbursts. The spectral evolution is consistent with the 'generalized shock model' of Valtaoja et al. (1992). A temporary increase in the core opacity and the emergence of a knot around the time of the second ${\gamma}$-ray event indicate that this ${\gamma}$-ray outburst might be an 'orphan' flare powered by the 'ring of fire' mechanism.

Radiation Effects on the Ignition and Flame Extinction of High-temperature Fuel (고온연료의 점화 및 화염 소화특성에 미치는 복사효과)

  • Kim, Yu Jeong;Oh, Chang Bo;Choi, Byung Il;Han, Yong Shik
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.50-56
    • /
    • 2013
  • The radiation effects on the auto-ignition and extinction characteristics of a non-premixed fuel-air counterflow field were numerically investigated. A detailed reaction mechanism of GRI-v3.0 was used for the calculation of chemical reactions and the optically-thin radiation model was adopted in the simulations. The flame-controlling continuation method was also used in the simulation to predict the auto-ignition point and extinction limits precisely. As a result, it was found that the maximum H radical concentration, $(Y_H)_{max}$, rather than the maximum temperature was suitable to understand the ignition and extinction behaviors. S-, C- and O-curves, which were well known from the previous theory, were identified by investigating the $(Y_H)_{max}$. The radiative heat loss fraction ($f_r$) and spatially-integrated heat release rate (IHRR) were introduced to grasp each extinction mechanism. It was also found that the $f_r$ was the highest at the radiative extinction limit. At the flame stretch extinction limit, the flame was extinguished due to the conductive heat loss which attributed to the high strain rate although the heat release rate was the highest. The radiation affected on the radiative extinction limit and auto-ignition point considerably, however the effect on the flame stretch extinction limit was negligible. A stable flame regime defined by the region between each extinction limit became wide with increasing the fuel temperature.

Experimental Study on Flame Extinction in Buoyancy-minimized Counterflow Diffusion Flame (부력의 영향을 최소화한 조건에서 대향류 확산화염의 화염 소화에 관한 실험적 연구)

  • Chung, Yong Ho;Park, Jin Wook;Park, Jeong;Kwon, Oh Boong;Yun, Jin-Han;Keel, Sang-In
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.2
    • /
    • pp.8-14
    • /
    • 2014
  • Experiments were conducted to clarify role of the outermost edge flame on low-strain-rate flame extinction in buoyancy-suppressed non-premixed methane flames diluted with He and $N_2$. The use of He curtain flow produced a microgravity level of $10^{-2}-10^{-3}g$ in $N_2$- and He-diluted non-premixed counterflow flame experiments. The critical He and $N_2$ mole fractions at extinction with a global strain rate were examined at various burner diameters (10, 20, and 25 mm). The results showed that the extinction curves differed appreciably with burner diameter. Before the turning point along the extinction curve, low-strain-rate flames were extinguished via shrinkage of the outermost edge flame with and without self-excitation. High-strain-rate flames were extinguished via a flame hole while the outermost edge flame was stationary. These characteristics could be identified by the behavior of the outermost edge flame. The results also showed that the outermost edge flame was not influenced by radiative heat loss but by convective heat addition and conductive heat losses to the ambient He curtain flow. The numerical results were discussed in detail. The self-excitation before the extinction of a low-strain-rate flame was well described by a dependency of the Strouhal number on global strain rate and normalized nozzle exit velocity.