• Title/Summary/Keyword: fire/explosion prevention

Search Result 92, Processing Time 0.025 seconds

Knowledge Modeling of Reliability Analysis and Safety Design for Offshore Safety Instrument System with MBSE (Model-Based Systems Engineering) (모델기반 시스템엔지니어링을 활용한 해양플랜트 안전시스템(SIS, Safety Instrumented System)의 신뢰도 분석 및 안전설계 지식 모델링)

  • Bae, Jeong-hoon;Jung, Min-jae;Shin, Sung-chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.222-235
    • /
    • 2018
  • The hydrocarbon gas leak in the offshore plant can cause large accidents and lead to significant damages to human, property and environment. For prevention of fire or explosion accidents from gas leak, a SIS(Safety Instrumented System) should be installed. In the early stage of the offshore design, required SIL(Safety Integrated Level) is determined and reliability analysis is performed to verify the design in reliability aspects. This study collected data, information related to reliability analysis and created knowledge model of safety design for the offshore system with MBSE(Model-Based Systems Engineering) concept. Knowledge model could support safety engineer's design tasks as the guidance of reliability analysis procedure of safety design and make good conversation with other engineers in yard, class, company, etc.

A Study on Explosive Limits of Flammable Materials - Explosive Limits of Ternary System by Means of Solution Thermodynamics and MRSM Model - (가연성물질의 폭발한계에 관한 연구 - 용액열역학 및 MRSM 모델에 의한 3성분계 폭발한계 -)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.91-97
    • /
    • 2005
  • The research on the explosive limits is one of fundamental fields of combustion process, and information on the explosive limits of mixture of fuel and oxidant, with or without additives, is very important for the prevention in industrial fire and explosion accidents. Explosive limits of all compounds and solvent mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Batten, Le Chatelier and MRSM(modified response surface methodology) model. In this study, the reference values of lower explosive limits(LEL) of the ethanol+toluene+ethylacetate system were compared with the calculated values by using the solution thermodynamics and the MRSM model, respectively. The values calculated by the proposed equations were a good agreement with literature data within a few percent. By means of this methodology, it is possible to evaluate reliability of experimental data of the lower explosive limits of the flammable mixtures. Also, from given results, it is possible to predict explosive limits of the other flammable liquid mixtures used in the chemical process by the use of the proposed equations.

A Study on the Development of Self-Checklists for Small and Medium-Sized Chemical Industries (중소규모 화학업종을 위한 자율점검표 개발 연구)

  • Woo Sub Shim;Kyeong-Seok Oh
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.757-763
    • /
    • 2023
  • Major industrial accidents in which workers die due to fires or explosions while working at chemical substance handling workplaces continue to occur. Among the major industrial accidents that occurred between 2005 and 2021, the accident status by work situation and equipment was analyzed. Through analysis, it was confirmed that storage, reaction, and piping facilities were the main causes of the accident, and a self-checklist for each facility was developed. Verification was conducted through the supply and use groups to evaluate the suitability of the use, duties, and items of the self-checklist. The user group showed higher satisfaction than the supplier group for all three suitability of use, job, and item. In particular, since the inspection items of the self-checklist were organized around the cause of the accident derived through the analysis of actual accident cases, the satisfaction level was high in all groups. It is expected that the self-checklist developed through this study will be useful not only for large companies but also for small and medium-sized chemical industries that lack professional manpower.

Study on the Prevention of Corrosion Damage for Underground Fuel Stroage Tank(1) (Corrosion Damage under the Sea Sand) (지하연료저장탱크의 부식손상 방지에 관한 연구(1) (바다모래에서 부식 손상))

  • 임우조;서동철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.1
    • /
    • pp.65-70
    • /
    • 2001
  • As consumption rate of energy increase rapidly, the facilities of fuel storage tank become large size. Almost all of the industry or public facilities storing fuel in underground fuel storage tank is manufactured by steel materials. Thus, this fuel storage tank made of steel materials is damaged by stray-current corrosion, it become destruction. If fuel storage tank is destructed, petroleum, oil and gas are leaked. So it bring about environmental pollution, energy loss, fire and explosion. Therefor, in this study, for study on the prevention of corrosion damage in underground fuel storage tank, it were investigated by corrosion and stray-current corrosion for SS 400 in dry sea sand and wet sea sand along to specific resistance. The main results obtained are as follows : As specific resistance decrease in wet sea sand, corrosion rate per year increase linearly, in case of back fill up wet sea sand in underground fuel storage tank, if the water is flow into dry sea sand, corrosion tendency of underground fuel storage tank is supposed sensitive.

  • PDF

Proposal for Ignition Source and Flammable Material Safety Management through 3D Modeling of Hazardous Area: Focus on Indoor Mixing Processes (폭발위험장소 구분도의 3D Modeling을 통한 점화원 및 가연물 안전관리 방안 제안: 실내 혼합공정을 중심으로)

  • Hak-Jae Kim;Duk-Han Kim;Young-Woo Chon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.47-59
    • /
    • 2024
  • Purpose: This study aims to propose measures for the prevention of fire and explosion accidents within manufacturing facilities by improving the existing classification criteria for hazardous locations based on the leakage patterns of flammable liquids. The objective is to suggest ways to safely manage ignition sources and combustible materials. Method: The hazardous locations were calculated using "KS C IEC 60079-10-1," and the calculated explosion hazard distances were visualized in 3D. Additionally, the formula for the atmospheric dispersion of flammable vapors, as outlined in "P-91-2023," was utilized to calculate the dispersion rates within the hazardous locations represented in 3D. Result: Visualization of hazardous locations in 3D enabled the identification of blind spots in the floor plan, facilitating immediate recognition of ignition sources within these areas. Furthermore, when calculating the time taken for the Lower Explosive Limit (LEL) to reach within the volumetric space of the hazardous locations represented in 3D, it was found that the risk level did not correspond identically with the explosion hazard distances. Conclusion: Considering the atmospheric dispersion of flammable liquids, it was concluded that safety management should be conducted. Therefore, a method for calculating the concentration values requiring detection and alert based on realistically achievable ventilation rates within the facility is proposed.

Measurement of Flash Point for Binary Mixtures of 2-Butanol, 2,2,4-Trimethylpentane, Methylcyclohexane, and Toluene at 101.3 kPa (2-Butanol, 2,2,4-Trimethylpentane, Methylcyclohexane 그리고 Toluene 이성분 혼합계에 대한 101.3 kPa에서의 인화점 측정)

  • Hwang, In Chan;In, Se Jin
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.161-167
    • /
    • 2020
  • For the design of the prevention and mitigation measures in process industries involving flammable substances, reliable safety data are required. An important property used to estimate the risk of fire and explosion for a flammable liquid is the flash point. Flammability is an important factor to consider when developing safe methods for storing and handling solids and liquids. In this study, the flash point data were measured for the binary systems {2-butanol + 2,2,4-trimethylpentane}, {2-butanol + methylcyclohexane} and {2-butanol + toluene} at 101.3 kPa. Experiments were performed according to the standard test method (ASTM D 3278) using a Stanhope-Seta closed cup flash point tester. A minimum flash point behavior was observed in the binary systems as in the many cases for the hydrocarbon and alcohol mixture that were observed. The measured flash points were compared with the predicted values calculated via the following activity coefficient (GE) models: Wilson, Non-Random Two-Liquid (NRTL), and UNIversal QUAsiChemical (UNIQUAC) models. The predicted data were only adequate for the data determined by the closed-cup test method and may not be appropriate for the data obtained from the open-cup test method because of its deviation from the vapor liquid equilibrium. The predicted results of this work can be used to design safe petrochemical processes, such as the identification of safe storage conditions for non-ideal solutions containing flammable components.

Reliability Analysis on Safety Instrumented System by Using Safety Integrity Level for Fire.Explosion Prevention in the Ethyl Benzene Processes (Ethyl Benzene 공정에서 화재.폭발방지를 위하여 안전건전성수준을 이용한 안전장치시스템의 신뢰도 분석)

  • Ko, Jae-Sun;Kim, Hyo;Lee, Su-Kyoung
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.1-8
    • /
    • 2006
  • The purpose of this work is to analyze quantitatively if the safety instrumented system(SIS) like the pressure safety valves(PSV) in the processes of ethyl benzene plant have been designed relevantly to the safety integrity level because overpressure in the benzene or ethyl benzene columns causes the explosive reactions, fires and reactor explosions. The safety integrity level(SIL) 3 has been adopted as a target level of SIS based on the general data of the Probability of Failure on Demand of PSV, $1.00E-4{\sim}1.00E-3$. The standard model of the reliability has been set up and then the fault tree analysis of it has been carried out to get the PFD of SIS, and the results show 8.97E-04, 5.37E-04, 5.37E-04 for benzene prefractionator column, benzene column and EB column, respectively. Thus, we conclude that the SIS is designed to fulfill the condition of SIL3, and when the partial stroke test for the control valve are carried out every sixth month, the SIS of each column is expected to increase its reliability up to $22{\sim}27%$.

Comparison and Improvement of Domestic and Foreign Regulations for the Prevention of Suffocation Accidents (국외 질식재해 예방규정 비교를 통한 국내 규정 개선방안)

  • Lim, Dae Sung;Lee, Seung kil;Kim, Chi-Nyon;Cho, Kee Hong;Yi, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.1
    • /
    • pp.83-93
    • /
    • 2021
  • Objectives: 'Confined space' was only defined in the Safety and Health Regulations as a place where oxygen deficiency and hydrogen sulfide must be dealt with at the time of the initial enactment (1982). The danger of fire and explosion were added in 2003. We will compare and review the regulations related to confined space work under the current safety and health rules alongside regulations in other countries and prepare a plan to improve the system through enhanced clarity and execution. Methods: In a comparison of systems for the prevention of suffocation in confined spaces in major countries (Germany, United States, Japan) different concepts of the definition of confined spaces in different countries apparently due to differences in each country's legal implementation system, accident analysis methods, the status of safety and health implementation in workplaces, the precautions against actual confined space work, and the definition of confined spaces were found to be not much different between Korea and the other foreign countries. Results: In the case of Germany and the United States, a confined space is defined as a contextual concept rather than a place, so more careful attention is needed from operators or enclosed space managers as it is often necessary to judge the actual workplace. In the case of Korea and Japan, the interior of the place is mainly defined as a place, especially in the case of Japan, which concentrates on oxygen deficiency and hydrogen sulfide poisoning. Conclusions: For measures to improve regulations on the prevention of suffocation accidents in Korea, I would like to propose three major measures to improve the system in the rules on domestic industrial safety and health standards. It is necessary to prepare and provide a guide to ensure that the 18 types of confined spaces currently defined as confined spaces are clearly understood by field management supervisors or workers.

A Study on the Identification of Hazardous Factors and Prevention of Accident in Old Boilers (노후보일러 유해인자 발굴 및 사고예방에 관한 연구)

  • Sa, Min-Hyung;Woo, In-Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Large-scale industrial boilers operating at high temperature and high pressure, have a large amount of water, and a large amount of energy is released at the time of explosion. Currently, most industrial boilers use gas fuel such as LNG and LPG, etc. and fuel exists in the same space as equipment, so there is a high possibility of secondary damage such as fire or explosion in the event of a boiler accident. Both special care and management are required to operate the very dangerous equipment that causes casualty 2.51 per accident. For boilers of a certain size or more, the Korea Energy Agency conducts inspections in accordance with the Energy Usage Rationalization Act, KS, and public notice of the Ministry of Industry, Trade and Resources. In this research, based on the results of the inspection, the hazard factorss are configured, and a questionnaire is conducted to the inspector, the equipment manager, the maintenance person, and the person in charge of the manufacturer. We analyzed the results by using AHP (Analytic Hierarchy Process). As a result of analysis, generally recognized hazard factorss are not good management, measurement failure, specification failure, water leak, leak analysis, but connection, welding, scale, and corrosion, etc. are relatively less important. It is judged that the adverse factors that are recognized to be highly important among all groups and careers are already well managed, but less important and adverse factors should be well managed to ensure that the safe usage of the boiler.

A Study on Actual Conditions of Industrial Safety Regulations - Based on Petrochemical Plant - (산업현장에서의 안전규제 적용실태 연구 - 석유화학공장을 중심으로 -)

  • Oh, Hyeong-Geun;Baek, Dong-Seung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.81-86
    • /
    • 2011
  • Without a special mineral resources in Korea, such as petrochemical industries, electronics and automotive industries to supply the basic material, but remains a key industry locations. Gongjeongsang dealing with hazardous materials, such as a fire or explosion hazard, and from this site sangjonhae safety regulations to protect human and material disaster prevention activities are focused. However, depending on the actual implementation of standardized safety regulations as necessary if not originally intended, proper objectivity and reliability of safety regulations, as well as impaired resulting in a waste of public and private administrative power and petrochemical industries and the competitiveness of the entire drop factor will. Accordingly, this study petrochemical plant is applied to a representative safety regulations, items for their safety are needed and these regulations as being implemented that was identified, according to a study, some of the need for regulation and implementation both in terms of reliability was low.