• 제목/요약/키워드: finite topology

검색결과 262건 처리시간 0.032초

Hybrid of topological derivative-based level set method and isogeometric analysis for structural topology optimization

  • Roodsarabi, Mehdi;Khatibinia, Mohsen;Sarafrazi, Seyyed R.
    • Steel and Composite Structures
    • /
    • 제21권6호
    • /
    • pp.1389-1410
    • /
    • 2016
  • This paper proposes a hybrid of topological derivative-based level set method (LSM) and isogeometric analysis (IGA) for structural topology optimization. In topology optimization a significant drawback of the conventional LSM is that it cannot create new holes in the design domain. In this study, the topological derivative approach is used to create new holes in appropriate places of the design domain, and alleviate the strong dependency of the optimal topology on the initial design. Furthermore, the values of the gradient vector in Hamilton-Jacobi equation in the conventional LSM are replaced with a Delta function. In the topology optimization procedure IGA based on Non-Uniform Rational B-Spline (NURBS) functions is utilized to overcome the drawbacks in the conventional finite element method (FEM) based topology optimization approaches. Several numerical examples are provided to confirm the computational efficiency and robustness of the proposed method in comparison with derivative-based LSM and FEM.

Stress-based topology optimization under buckling constraint using functionally graded materials

  • Minh-Ngoc Nguyen;Dongkyu Lee;Soomi Shin
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.203-223
    • /
    • 2024
  • This study shows functionally graded material structural topology optimization under buckling constraints. The SIMP (Solid Isotropic Material with Penalization) material model is used and a method of moving asymptotes is also employed to update topology design variables. In this study, the quadrilateral element is applied to compute buckling load factors. Instead of artificial density properties, functionally graded materials are newly assigned to distribute optimal topology materials depending on the buckling load factors in a given design domain. Buckling load factor formulations are derived and confirmed by the resistance of functionally graded material properties. However, buckling constraints for functionally graded material topology optimization have not been dealt with in single material. Therefore, this study aims to find the minimum compliance topology optimization and the buckling load factor in designing the structures under buckling constraints and generate the functionally graded material distribution with asymmetric stiffness properties that minimize the compliance. Numerical examples verify the superiority and reliability of the present method.

Multi-material topology optimization for crack problems based on eXtended isogeometric analysis

  • Banh, Thanh T.;Lee, Jaehong;Kang, Joowon;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제37권6호
    • /
    • pp.663-678
    • /
    • 2020
  • This paper proposes a novel topology optimization method generating multiple materials for external linear plane crack structures based on the combination of IsoGeometric Analysis (IGA) and eXtended Finite Element Method (X-FEM). A so-called eXtended IsoGeometric Analysis (X-IGA) is derived for a mechanical description of a strong discontinuity state's continuous boundaries through the inherited special properties of X-FEM. In X-IGA, control points and patches play the same role with nodes and sub-domains in the finite element method. While being similar to X-FEM, enrichment functions are added to finite element approximation without any mesh generation. The geometry of structures based on basic functions of Non-Uniform Rational B-Splines (NURBS) provides accurate and reliable results. Moreover, the basis function to define the geometry becomes a systematic p-refinement to control the field approximation order without altering the geometry or its parameterization. The accuracy of analytical solutions of X-IGA for the crack problem, which is superior to a conventional X-FEM, guarantees the reliability of the optimal multi-material retrofitting against external cracks through using topology optimization. Topology optimization is applied to the minimal compliance design of two-dimensional plane linear cracked structures retrofitted by multiple distinct materials to prevent the propagation of the present crack pattern. The alternating active-phase algorithm with optimality criteria-based algorithms is employed to update design variables of element densities. Numerical results under different lengths, positions, and angles of given cracks verify the proposed method's efficiency and feasibility in using X-IGA compared to a conventional X-FEM.

Multi-material topology optimization of Reissner-Mindlin plates using MITC4

  • Banh, Thien Thanh;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제27권1호
    • /
    • pp.27-33
    • /
    • 2018
  • In this study, a mixed-interpolated tensorial component 4 nodes method (MITC4) is treated as a numerical analysis model for topology optimization using multiple materials assigned within Reissner-Mindlin plates. Multi-material optimal topology and shape are produced as alternative plate retrofit designs to provide reasonable material assignments based on stress distributions. Element density distribution contours of mixing multiple material densities are linked to Solid Isotropic Material with Penalization (SIMP) as a design model. Mathematical formulation of multi-material topology optimization problem solving minimum compliance is an alternating active-phase algorithm with the Gauss-Seidel version as an optimization model of optimality criteria. Numerical examples illustrate the reliability and accuracy of the present design method for multi-material topology optimization with Reissner-Mindlin plates using MITC4 elements and steel materials.

변속기 케이스의 위상최적설계 (Topology Optimization of a Transmission Case)

  • 박지원;강동수;탁승민;김정경;송철기;이석순;박중환
    • 한국정밀공학회지
    • /
    • 제27권11호
    • /
    • pp.57-62
    • /
    • 2010
  • The transmission case has bearing loads, The case should be designed with more stiffness and lightweight under high external loads, In this study, we performed FEA(Finite Element Analysis) for the transmission case and performed topology optimization base on the results of FEA. We performed topology optimization with the control of the shape size which is the results of topology optimization and suggested the shaped of the transmission case of topology optimization.

부드러운 경계 위상 최적설계기법을 이용한 유전체 형상 및 위상 최적설계 (Optimal Design of Dielectric shape and Topology using Smooth Boundary Topology Optimization Method)

  • 정기우;최낙선;김남경;김동훈
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1936-1941
    • /
    • 2009
  • This paper deals with a new methodology for topology optimization in which the topology of the design domain may change during the shape optimization process. To achieve this, the concept of the topological gradient is introduced to compute the sensitivity of an objective function when a small hole is drilled in the domain. Based on shape and topological sensitivity values, the shape and topology of the design domain may be simultaneously changed during design iterations if necessary. To verify the advantages and also to facilitate understanding of the method itself, two electrostatic design problems have been tested by using 2D finite element analysis: the first is the inverse problem of a simple dielectric model and the second is the rotor design of a MEMS actuator.

구조 최적화를 위한 특징형상 재설계 알고리즘 (A Feature-based Reconstruction Algorithm for Structural Optimization)

  • 박상근
    • 융복합기술연구소 논문집
    • /
    • 제4권2호
    • /
    • pp.1-9
    • /
    • 2014
  • This paper examines feature-based reconstruction algorithm using feature-based modeling and based on topology optimization technology, which aims to achieve a minimal volume weight and to satisfy user-defined constraints such as stress, deformation related conditions. The finite element model after topology optimization allows us to remove some region of a solid model for predefined volume requirement. The stress or deformation distribution resulted from finite element analysis enables us to add some material to the solid model for a robust structure. For this purpose, we propose a feature-based redesign algorithm which inserts negative features to the solid model for material removal and positive features for material addition, and we introduce a bisection method which searches an optimal structure by iteratively applying the feature-based redesign algorithm. Several examples are considered to illustrate the proposed algorithms and to demonstrate the effectiveness of the present approach.

밀도 분포를 이용한 최적 위상 설계 시스템의 개발 (Development of CAD System for Optimal Topology Design using Density Distribution)

  • 정진평;이건우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.852-859
    • /
    • 1994
  • Optmal topology design is to search the optimal layout of the structure which can be used fot the shape of the conceptual design stage. Our objective is to maximize the stiffness of the structure under a material usage constraint. The density of each finite element is the design variable and its relationship with Young's modulus is expressed by quadratic form. The shape is represented by the entire density distribution, the structural analysis is performed by finite element method and the optimization is achieved by feasible direction method. Unlike optimality criteria method,feasible direction method can handle various problems simultaneously, that is, multi- objectives and multi-constraints. Total optimization time can be reduced by the approximation of the material property and fewer design variables than homogenization method. Topology optimization is applied to design the shape of ribs.

  • PDF

단상 BLDC 전동기의 토오크 리플 저감을 위한 공극 설계 (Design of Air Gap for Reducing Torque Ripple in a Single-Phase BLDC Motor)

  • 양병렬;권병일;박승찬
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권2호
    • /
    • pp.49-54
    • /
    • 2002
  • Most single-Phase brushless DC (BLDC) motors have unequal air gap to eliminate the dead-point where the developed torque value is zero. However this partial increase of the air gap deteriorates the motor characteristics in cogging torque. Thus in this paper a new topology of unequal air gap is proposed to solve this problem. The topology is to use some pairs of equal or unequal air gaps. As a result, it is proved by the finite element analysis and experimental results that the single-Phase BLDC motor with the proposed air gap topology is very effective in reducing the cogging torque.

위상 최적화 기법을 잉요한 FED용 스페이서의 배치 설계 (Design of the Spacers Arrangement for Field Emission Displays using Topology Optimization Technique)

  • 정태은
    • 한국정밀공학회지
    • /
    • 제17권11호
    • /
    • pp.49-54
    • /
    • 2000
  • A field emission display has spacers separating the emitting base and display face. The arrangement of the spacer is important for maintenance of required clearance, endurance of bending stresses, and efficient vacuum sealing. Topology optimization technique with material density was introduced to select the best position of the spacers from the available positions. The displacement and Von Mises stress distribution of the panels with optimal spacers were calculated by finite element method. Also the design guide for adding eliminating spacers was proposed.

  • PDF