• Title/Summary/Keyword: finite series

Search Result 1,021, Processing Time 0.032 seconds

Frequency Response Properties of SAW Tansversal Filters by Impulse Modeling (임펄스 모델에 의한 SAW Transversal Filters의 주파수 응답 특성)

  • 손헌영;윤영섭
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.173-176
    • /
    • 1999
  • Frequency responses of the surface acoustic wave(SAW) filters are simulated by using the impulse modeling. The simulation technique of the SAW filters is to use the Fourier transformation to make a correspondence between the impulse response of the filter and the taps in the delay line. Since the Fourier series must be truncated after a finite number of terms, window functions are often used to weight the coefficients to obtain the desirable side-lobe level and bandwidth. The filter design is operated through the iterative simulation procedures. The design process is capable of yielding filters with optimized frequency response characteristics.

  • PDF

Experimental Study on The Bending Collapse Characteristics of Al Rectangular Tubes (알루미늄 사각관의 굽힘붕괴특성에 관한 실험적 고찰)

  • 강신유;김창수;정태은
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.265-272
    • /
    • 1997
  • In this paper the bending collapse characteristics of 60 series Al rectangular tubes were studied with a pure bending collapse test rig which could apply the pure bending moment, there occured three kinds of bending collapse modes - local buckling, delayed buckling, tensile failure - depending on the b/t(width/thickness) ratio and material properties. Experiment results are compared with the results of finite element method.

  • PDF

Recent Progress of Freak Wave Prediction

  • Mori, Nobuhito;Janssen, Peter A.E.M.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.127-134
    • /
    • 2006
  • Based on a weakly non-Gaussian theory the occurrence probability of freak waves is formulated in terms of the number of waves in a time series and the surface elevation kurtosis. Finite kurtosis gives rise to a significant enhancement of freak wave generation in comparison with the linear narrow banded wave theory. For fixed number of waves, the estimated amplification ratio of freak wave occurrence due to the deviation from the Gaussian theory is 50% - 300%. The results of the theory are compared with laboratory and field data.

  • PDF

Approximate analysis of the serial production lines (분할기법을 이용한 직렬 생산라인의 근사화 해석)

  • 서기성;강재현;이창훈;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.406-410
    • /
    • 1990
  • This paper presents an approximate analysis of the serial production lines using decomposition technique. A serial production line consists of a series of unreliable machines separated by finite buffers. The serial production line is evaluated by approximation method, the results of which are compared with those examined by the discrete time event simulation, based on this approximation method, a gradient technique is proposed, which improves the efficiency of an operation of production line through the re-allocation of buffers.

  • PDF

A study on the observer design of bilinear system via walsh function (WALSH 함수에 의한 쌍일차계의 관측자설계에 관한 연구)

  • 안두수;김종부
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.115-119
    • /
    • 1987
  • In this paper the observer design problem in bilinear systems is studied using the Walsh functions as approximating set of functions to find a finite series expansion of the state of bilinear system. A classical Liapnove method, to finding a class of observer feedback matrix, is applied to ensure uniform asymptotic stability of the observation error dynamics. An algorithm is derived for observer state eq. via Walsh function. The basic objective is to develop a computational algorithm for the determination of the coefficients in the expansion. This approach technique gives satisfactory result as well provides precise and effective method for the bilinear observer design problem.

  • PDF

E-polarized diffraction coefficients extended inside dielectric region of a composite wedge (복합쐐기의 유전체 영역에서 확장된 E-편파 회절계수)

  • 김세윤
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.7
    • /
    • pp.8-14
    • /
    • 1997
  • The phusical optics approximation to an E-polarized diffraction by a composite wedge provides its diffraction coefficients in terms of finite series of cotangent functions. In this paper, its diffraction coefficients inside the dielectric part are extended to become the exact solution to the perfectly conducting wedge as its relative dielectric constant increases to infinite or decreases to 1. It is assured that the extended diffraction coefficients satisfy the boundary condition at th econducting interface and become zero in the artificially complementary region of the composite wedge.

  • PDF

A NEW APPLICATION OF ADOMIAN DECOMPOSITION METHOD FOR THE SOLUTION OF FRACTIONAL FOKKER-PLANCK EQUATION WITH INSULATED ENDS

  • Ray, Santanu Saha
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1157-1169
    • /
    • 2010
  • This paper presents the analytical solution of the fractional Fokker-Planck equation by Adomian decomposition method. By using initial conditions, the explicit solution of the equation has been presented in the closed form and then the numerical solution has been represented graphically. Two different approaches have been presented in order to show the application of the present technique. The present method performs extremely well in terms of efficiency and simplicity.

Computational optimisation of a concrete model to simulate membrane action in RC slabs

  • Hossain, Khandaker M.A.;Olufemi, Olubayo O.
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.325-354
    • /
    • 2004
  • Slabs in buildings and bridge decks, which are restrained against lateral displacements at the edges, have ultimate strengths far in excess of those predicted by analytical methods based on yield line theory. The increase in strength has been attributed to membrane action, which is due to the in-plane forces developed at the supports. The benefits of compressive membrane action are usually not taken into account in currently available design methods developed based on plastic flow theories assuming concrete to be a rigid-plastic material. By extending the existing knowledge of compressive membrane action, it is possible to design slabs in building and bridge structures economically with less than normal reinforcement. Recent research on building and bridge structures reflects the importance of membrane action in design. This paper describes the finite element modelling of membrane action in reinforced concrete slabs through optimisation of a simple concrete model. Through a series of parametric studies using the simple concrete model in the finite element simulation of eight fully clamped concrete slabs with significant membrane action, a set of fixed numerical model parameter values is identified and computational conditions established, which would guarantee reliable strength prediction of arbitrary slabs. The reliability of the identified values to simulate membrane action (for prediction purposes) is further verified by the direct simulation of 42 other slabs, which gave an average value of 0.9698 for the ratio of experimental to predicted strengths and a standard deviation of 0.117. A 'deflection factor' is also established for the slabs, relating the predicted peak deflection to experimental values, which, (for the same level of fixity at the supports), can be used for accurate displacement determination. The proposed optimised concrete model and finite element procedure can be used as a tool to simulate membrane action in slabs in building and bridge structures having variable support and loading conditions including fire. Other practical applications of the developed finite element procedure and design process are also discussed.

Flexural behavior of reinforced concrete beams strengthened with an ultra-high performance concrete panel of various thicknesses

  • Seonhyeok Kim;Taegeon Kil;Sangmin Shin;Daeik Jang;H.N. Yoon;Jin-Ho Bae;Joonho Seo;Beomjoo Yang
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.487-498
    • /
    • 2023
  • The present study investigated the flexural behavior of reinforced concrete (RC) beams strengthened with an ultrahigh performance concrete (UHPC) panel having various thicknesses. Two fabrication methods were introduced in this study; one was the direct casting of UHPC onto the bottom surface of the RC beams (I-series), and the other was the attachment of a prefabricated UHPC panel using an adhesive (E-series). UHPC panels having thicknesses of 10, 30, 50, and 70 mm were applied to RC beams, and these specimens were subjected to four-point loading to assess the effect of the UHPC thickness on the flexural strengthening of RC beams. The test results indicated that the peak strength and initial stiffness were vastly enhanced with an increase in the thickness of the UHPC panel, showing an improved energy dissipation capacity. In particular, the peak strength of the E-series specimens was higher than that of I-series specimens, showing high compatibility between the RC beam and the UHPC panel. The experimental test results were comparatively explored with a discussion of numerical analysis. Numerical analysis results showed that the predictions are in fair agreement with experimental results.

Investigation of Residual Stress Distributions of Induction Heating Bended Austenitic Stainless Steel (316 Series) Piping (유도 가열 굽힘된 316 계열 오스테나이트 스테인리스 강 배관의 잔류응력 분포 고찰)

  • Kim, Jong Sung;Kim, Kyoung Soo;Oh, Young Jin;Chang, Hyun Young;Park, Heung Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.809-815
    • /
    • 2014
  • The induction heating bending process, which has been recently applied to nuclear piping, can generate residual stresses due to thermomechanical mechanism during the process. This residual stress is one of the crack driving forces that have important effects on crack initiation and propagation. However, previous studies have focused only on geometric shape variations such as the change in thickness and ovality. Moreover, very few studies are available on the effects of process variables on residual stresses. This study investigated the effects of process variables on the residual stress distributions of induction heating bended austenitic stainless steel (316 series) piping using parametric finite element analysis. The results indicated that the heat generation rate and feed velocity have significant effects on the residual stresses whereas the moment and bending angle have insignificant effects.