• Title/Summary/Keyword: finite rotation

Search Result 485, Processing Time 0.025 seconds

Strain localization and failure load predictions of geosynthetic reinforced soil structures

  • Alsaleh, Mustafa;Kitsabunnarat, Akadet;Helwany, Sam
    • Interaction and multiscale mechanics
    • /
    • v.2 no.3
    • /
    • pp.235-261
    • /
    • 2009
  • This study illustrates the differences between the elasto-plastic cap model and Lade's model with Cosserat rotation through the analyses of two large-scale geosynthetic-reinforced soil (GRS) retaining wall tests that were brought to failure using a monotonically increasing surcharge pressure. The finite element analyses with Lade's model were able to reasonably simulate the large-scale plane strain laboratory tests. On average, the finite element analyses gave reasonably good agreement with the experimental results in terms of global performances and shear band occurrences. In contrast, the cap model was not able to simulate the development of shear banding in the tests. In both test simulations the cap model predicted failure loads that were substantially less than the measured ones.

ROTATION IMPLEMENTATION OF A CIRCULAR CYLINDER IN INCOMPRESSIBLE FLOW VIA STAGGERED GRID APPROACH

  • Xiao Mingqing;Lin Yuan;Myatt James H.;Camphouse R. Chris;Banda Siva S.
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.67-82
    • /
    • 2006
  • In this paper, we present a finite difference method for the implementation of the rotation of a circular cylinder in the incompressible flow field by solving the two-dimensional unsteady Navier-Stokes equations. The approach is to use staggered grid method so that the accuracy and order of convergence of the associated algorithms can be maintained. The proposed method is easy to be implemented and is effective. A set of simulations for the flow dynamics is provided to show the computational results.

Study on free vibration characteristics of rotating composite box beams (회전하는 복합재료 상자형 보의 진동 특성에 관한 연구)

  • Lim, In-Gyu;Choi, Ji-Hoon;Jeon, Seong-Min;Lee, In;Han, Jae-Hung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.61-64
    • /
    • 2003
  • The finite element method based on the refined beam theory is applied to the vibration problem of rotation composite box beams. The present beam model includes a number of non-classical structural effects such as transverse shear, warping deformations, geometric non-linearities. The nonlinear finite element equations of motion are obtained from Hamilton's principle. Vibration characteristics versus various parameters such as ply angle, collective pitch angle, pretwist and precone are investigated for rotation box ben and relevant conclusions are outlined.

  • PDF

TREPAN SHAPE MODIFICATION OF MOTOR BEARING (모터 베어링의 트레판 형상 수정에 관한 연구)

  • 이경원;반재삼;강형선;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.950-953
    • /
    • 2002
  • Trepan prevents wear of an inside part of a bearing when the initial shaft rotates. It continuously contacts with the eccentric part of the shaft in rotation and is loaded repeatedly. Therefore, even if an early crack of a trepan part is small, a crack progresses by a repeated load. If a crack progresses, very small chips come out. This is pill in the rotor and prevents rotation of the compressor. There can be leaks in a microgroove and extreme wear can occur due to lack of oil on the surface contact pan. Therefore, this study was carried out to compare and investigate trepan strength and deflection characteristics between trepan locations and dimension changes using a finite element method and search a motor bearing for a model with bigger stiffness of a trepan part and the same deflection. And then. five different types of the oil groove model were chosen to prevent small crack and considered also machining ability and the analysis was carried out on oil feeding flow.

  • PDF

The Origin and Effect of Hot Spot Phenomena on Judder Vibration in Automotive Disk Brake (디스크 브레이크에서 열섬 현상이 발생되는 원인과 저더 진동에 미치는 영향)

  • Cho, Ho-Joon;Cho, Chong-Du;Kim, Myoung-Gu;Maeng, Ju-Won;Lee, Jae-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.213-218
    • /
    • 2006
  • Hot spot phenomenon is caused by non-uniform contact area between brake pad and disk frequent braking. Brake disk deformed by locally concentrated heat increases magnitude of frictional vibration. And this deformation can highly influence the judder vibration. In this experimental study, vibration and hot spot was measured in accordance with rotation of disk and pressure of master cylinder for finding the factors that causes hot spot phenomena. For comparing hot spot aspects with mode shapes of disk, mode shapes were measured by conducting modal test, and analyzed by using finite element analysis. Relation between hot spot phenomenon, and mode shape, pressure of master cylinder and rotation speed of disk respectively, was achieved by hot spot measurement and frequency analysis.

  • PDF

A Hydroelastic Response Analysis of Ships with Forward Speed in Regular Waves (규칙파중을 항행하는 선박의 유탄성응답해석)

  • Lee, S.C.;Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.48-55
    • /
    • 2010
  • When a large ship is advancing in waves, ship undergoes the hydroelastic response, which has influences on structural stability and the fatigue destruction etc. of the ship. Therefore, to predict accurate hydroelastic response, it is necessary to analyze hydroelastic response including fluid-structure interaction. In this research, a ship is divided into many hull elements to calculate the fluid forces and wave exciting forces on each elements using three-dimensional source distribution method. The calculated fluid forces and wave exciting forces are assigned to nodes of hull elements. The neighbor nodes are connected with elastic beam elements. We analyzed hydroelastic responses, and those are formulated by using finite element method. Particularly, to estimate the influence of forward speed on the hydroelastic responses, we use two different methods : Full Hull Rotation Method(FHRM) and Sectional Hull Rotation Method(SHRM).

Behaviour of lead-rubber bearings

  • Mori, Atsushi;Moss, P.J.;Carr, A.J.;Cooke, N.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.1-15
    • /
    • 1998
  • Experimental work undertaken to investigate the behaviour of lead-rubber bearings under compression and a combination of compression and shear or rotation has been reported on elsewhere. However, it is difficult to determine the state of stress within the bearings in terms of the applied forces and the interaction between the lead plug and the steel shims and elastomeric layers. In order to supply some of the missing information about the stress-strain state within the bearings, an analytical study using the finite element method was carried out. The available experimental results were used to validate the model and although agreement was not as good as expected (on account of difficulties in modelling the lead plug), the analyses did provide some information about the state of the stress within the bearing.

A Study on Measurement and Analysis of In-Plane Deformations by Using Laser Speckle Interferometry (I) (레이저 스페클 간섭법을 이용한 면내 변형 측정 및 해석에 대한 연구 (I))

  • 강영준;노경완;강형수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.121-129
    • /
    • 1998
  • In-plane ESPI(Electronic Speckle Pattern Interferometry) was devised to measure in-plane deformations and rotation of a specimen with laser in this study. ESPI is a optical measuring method to be able to measure the deformations of engineering components and materials in industrial fields. The conventional measuring methods of surface deformations such as the strain gauge have many demerits because they are contact and point-to-point measuring ones. But that ESPI is noncontact, nondestructive and whole field measuring method can overcome previous disadvantages. We used ESPI which is sensitive to in-plane displacement for measuring in-plane deformations of a disk. And the 4-frame phase shifting method was used for the quantitative analysis. First of all, the system calibration was done due to an in-plane rotation before getting deformations of a disk. Finally we showed good agreement between the experiment results and those of the FEA(Finite Element Analysis).

  • PDF

The Origin and Effect of Hot Spot Phenomena on Judder Vibration in Automotive Disk Brake (디스코 브레이크에서 열섬 현상이 발생되는 원인과 저더진동에 미치는 영향)

  • Cho, Chong-Du;Kim, Myoung-Gu;Cho, Ho-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.886-892
    • /
    • 2006
  • Hot spot phenomenon is caused by non-uniform contact area between brake pad and disk frequent braking. Brake disk deformed by locally concentrated heat increases magnitude of frictional vibration. And this deformation can highly influence the judder vibration. In this experimental study, vibration and hot spot was measured in accordance with rotation of disk and pressure of master cylinder for finding the factors that causes hot spot phenomena. For comparing hot spot aspects with mode shapes of disk, mode shapes were measured by conducting modal test, and analyzed by using finite element analysis. Relation between hot spot phenomenon, and mode shape, pressure of master cylinder and rotation speed of disk respectively, was achieved by hot spot measurement and frequency analysis.