• Title/Summary/Keyword: finite rings

Search Result 199, Processing Time 0.023 seconds

Analysis and structural design of various turbine blades under variable conditions: A review

  • Saif, Mohd;Mullick, Parth;Imam, Ashhad
    • Advances in materials Research
    • /
    • v.8 no.1
    • /
    • pp.11-24
    • /
    • 2019
  • This paper presents a review study for energy-efficient gas turbines (GTs) with cycles which contributes significantly towards sustainable usage. Nonetheless, these progressive engines, operative at turbine inlet temperatures as high as $1600^{\circ}C$, require the employment of highly creep resistant materials for use in hotter section components of gas turbines like combustion chamber and blades. However, the gas turbine obtain its driving power by utilizing the energy of treated gases and air which is at piercing temperature and pushing by expanding through the several rings of steady and vibratory blades. Since the turbine blades works at very high temperature and pressure, high stress concentration are observed on the blades. With the increasing demand of service, to provide adequate efficiency and power within the optimized level, turbine blades are to be made of those materials which can withstand high thermal and working load condition for longer cycle time. This paper depicts the recent developments in the field of implementing the best suited materials for the GTs, selection of proper Thermal Barrier Coating (TBC), fracture analysis and experiments on failed or used turbine blades and several other designing and operating factors which are effecting the blade life and efficiency. It is revealed that Nickel based Superalloys were promising, Cast Iron with Zirconium and Pt-Al coatings are used as best TBC material, material defects are the foremost and prominent reason for blade failure.

Crushing study for interlocked armor layers of unbonded flexible risers with a modified equivalent stiffness method

  • Ren, Shaofei;Liu, Wencheng;Song, Ying;Geng, Hang;Wu, Fangguang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.521-529
    • /
    • 2019
  • Interlocked armor layers of unbonded flexible risers may crush when risers are being launched. In order to predict the behavior of interlocked armor layers, they are usually simplified as rings with geometric and contact nonlinearity ignored in the open-literature. However, the equivalent thickness of the interlocked armor layer has not been addressed yet. In the present paper, a geometric coefficient ${\gamma}$ is introduced to the equivalent stiffness method, and a linear relationship between ${\gamma}$ and geometric parameters of interlocked armor layers is validated by analytical and finite element models. Radial stiffness and equivalent thickness of interlocked armor layers are compared with experiments and different equivalent methods, which show that the present method has a higher accuracy. Furthermore, hoop stress distribution of interlocked armor layer under crushing is predicted, which indicates the interlocked armor layer can be divided into two compression and two expansion zones by four symmetrically distributed singular points.

Shape Design of Bends in District Heating Pipe System by Taguchi Method (다구찌 방법을 이용한 지역난방시스템의 벤드형상 설계)

  • Choi, Moon-Deok;Kim, Joo-Yong;Ko, Hyun-Il;Cho, Chong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.307-313
    • /
    • 2010
  • In this study, alternative designs for the bends used in district heating pipes are investigated. The district heating pipes, which are subjected to temperatures of 10 to $120^{\circ}C$ and a water pressure of $16\;kgf/cm^2$, have to withstand thermomechanical cyclic loads when in use. These pipes comprise three concentric tubes: a steel pipe (internal), polyurethane (PUR) insulator (middle), and a high-density polyethylene (HDPE) case (external). In addition, the bends in the district heating pipe system are covered with foam pads that cause aging. In this study, an alternative bend design that does not involve the use of a foam pad is proposed to overcome the aging problem in the bends. In the proposed design, "shear rings" are added to the surface of a bend, and its dimensions are determined by a combination of the statistical (Taguchi) method and FEM. The geometrical parameters such as thickness, height, and number of the rings significantly affect the design optimization, and hence, they affect the results of the FEM.

Optimized Design of O-ring Groove in LPG Filling Unit Using Taguchi Experimental Method (다구찌 실험법을 이용한 LPG 충전노즐 O-링 그루브의 최적화 설계연구)

  • Kim Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.40-46
    • /
    • 2006
  • In this paper, the optimized design of a rectangular O-ring groove has been analyzed for a maximum Cauchy stress and maximum strain using the Taguchi method. This method may efficiently optimize the design parameters for an O-ring groove of a LPG filling unit. The computed FEM results indicate that the optimized design parameters can only be drawn by nine experimental numbers of iterations when the Taguchi design technique has been employed with a finite element method. This means that the Taguchi design method is very useful for the optimization design of O-ring rectangular groove geometry. Based on the computed FEM results by the Taguchi design technique, the dimensions of a groove geometry are given as h=2.5 mm, d=2.74 mm, c=0.15 mm, and w=3.0 mm. In this study, the initial compression ratio of O-rings is recommended as 8.7% for a gas supply pressure of 18 $kg/cm^2$.

  • PDF

Numerical comparison of the seismic performance of steel rings in off-centre bracing system and diagonal bracing system

  • Bazzaz, Mohammad;Andalib, Zahra;Kheyroddin, Ali;Kafi, Mohammad Ali
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.917-937
    • /
    • 2015
  • During a seismic event, a considerable amount of energy is input into a structure. The law of energy conservation imposes the restriction that energy must either be absorbed or dissipated by the structure. Recent earthquakes have shown that the use of concentric bracing system with their low ductility and low energy dissipation capacity, causes permanent damage to structures during intense earthquakes. Hence, engineers are looking at bracing system with higher ductility, such as chevron and eccentric braces. However, braced frame would not be easily repaired if serious damage has occured during a strong earthquake. In order to solve this problem, a new bracing system an off-centre bracing system with higher ductility and higher energy dissipation capacity, is considered. In this paper, some numerical studies have been performed using ANSYS software on a frame with off-centre bracing system with optimum eccentricity and circular element created, called OBS_C_O model. In addition, other steel frame with diagonal bracing system and the same circular element is created, called DBS_C model. Furthermore, linear and nonlinear behavior of these steel frames are compared in order to introduce a new way of optimum performance for these dissipating elements. The obtained results revealed that using a ductile element or circular dissipater for increasing the ductility of off-centre bracing system and centric bracing system is useful. Finally, higher ductility and more energy dissipation led to more appropriate behavior in the OBS_C_O model compared to DBS_C model.

THD Analysis of a Surface Textured Parallel Thrust Bearing: Effect of Dimple Radius and Depth (Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 딤플 반경과 깊이의 영향)

  • Jeong, YoHan;Park, TaeJo
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.303-310
    • /
    • 2014
  • In order to reduce friction and improve reliability, researchers have applied various surface texturing methods to highly sliding machine elements such as mechanical seals and piston rings. Despite extensive theoretical research on surface texturing, previous numerical results are only applicable to isothermal and iso-viscous conditions. Because the lubricant flow pattern of textured bearing surfaces is much more complicated than that for non-textured bearings, the Navier?Stokes equation is more suitable than the Reynolds equation for the former. This study carries out a thermohydrodynamic (THD) lubrication analysis to investigate the lubrication characteristics of a single micro-dimpled parallel thrust bearing cell. The analysis involves using the continuity, Navier?Stokes, energy, temperature?viscosity relation, and heat conduction equations with the commercial computational fluid dynamics (CFD) code FLUENT. This study discretizes these equations using the finite volume method and solves them using the SIMPLE algorithm. The results include finding the streamlines, pressure and temperature distributions, and variations in the friction force and leakage for various dimple radii and depths. Increasing the dimple radius and decreasing the depth causes a recirculation flow to form because of a strong vortex, and the oil temperature greatly increases compared with the non-textured case. The present numerical scheme and results are applicable to THD analysis of various surface-textured sliding bearings and can lead to further study.

Measurement of Thermal Deformation of a Double Ring Structure using Digital Image Correlation Technique (디지털 영상 보정 기법을 이용한 이중 링 구조물의 열변형 측정)

  • Jin, Tailie;Goo, Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.877-882
    • /
    • 2011
  • In this paper, thermal deformation of a double ring structure using digital image correlation technique (DIC) was measured. The double ring structure consisted of two parts; the inner ring was aluminium which had a large thermal expansion coefficient and the outer ring was titanium which had a small thermal expansion coefficient. We heated the double ring structure from $50^{\circ}C$ to $200^{\circ}C$ in a chamber and at the same time, two cameras captured surface images of the double ring structure. Initially, there was a 21 ${\mu}m$ gap between the inner ring and outer ring. The gap was closed at around $80^{\circ}C$ and after that, two rings expanded together. In order to compare the experimental results with analysis results, a finite element analysis was performed using ANSYS. The results of DIC measurement and ANSYS analysis were compared and agreed well.

THE FINITE DIMENSIONAL PRIME RINGS

  • Koh, Kwangil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.45-49
    • /
    • 1983
  • If R is ring and M is a right (or left) R-module, then M is called a faithful R-module if, for some a in R, x.a=0 for all x.mem.M then a=0. In [4], R.E. Johnson defines that M is a prime module if every non-zero submodule of M is faithful. Let us define that M is of prime type provided that M is faithful if and only if every non-zero submodule is faithful. We call a right (left) ideal I of R is of prime type if R/I is of prime type as a R-module. This is equivalent to the condition that if xRy.subeq.I then either x.mem.I ro y.mem.I (see [5:3:1]). It is easy to see that in case R is a commutative ring then a right or left ideal of a prime type is just a prime ideal. We have defined in [5], that a chain of right ideals of prime type in a ring R is a finite strictly increasing sequence I$_{0}$.contnd.I$_{1}$.contnd....contnd.I$_{n}$; the length of the chain is n. By the right dimension of a ring R, which is denoted by dim, R, we mean the supremum of the length of all chains of right ideals of prime type in R. It is an integer .geq.0 or .inf.. The left dimension of R, which is denoted by dim$_{l}$ R is similarly defined. It was shown in [5], that dim$_{r}$R=0 if and only if dim$_{l}$ R=0 if and only if R modulo the prime radical is a strongly regular ring. By "a strongly regular ring", we mean that for every a in R there is x in R such that axa=a=a$^{2}$x. It was also shown that R is a simple ring if and only if every right ideal is of prime type if and only if every left ideal is of prime type. In case, R is a (right or left) primitive ring then dim$_{r}$R=n if and only if dim$_{l}$ R=n if and only if R.iden.D$_{n+1}$ , n+1 by n+1 matrix ring on a division ring D. in this paper, we establish the following results: (1) If R is prime ring and dim$_{r}$R=n then either R is a righe Ore domain such that every non-zero right ideal of a prime type contains a non-zero minimal prime ideal or the classical ring of ritght quotients is isomorphic to m*m matrix ring over a division ring where m.leq.n+1. (b) If R is prime ring and dim$_{r}$R=n then dim$_{l}$ R=n if dim$_{l}$ R=n if dim$_{l}$ R<.inf. (c) Let R be a principal right and left ideal domain. If dim$_{r}$R=1 then R is an unique factorization domain.TEX>R=1 then R is an unique factorization domain.

  • PDF

Optimal Design of Permanent Magnet Thrust Bearings (영구자석형 스러스트 베어링의 최적 설계)

  • Yoo, Seong-Yeol;Kim, Woo-Yeon;Kim, Seung-Jong;Lee, Wook-Ryun;Bae, Yong-Chae;Noh, Myoung-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.353-358
    • /
    • 2011
  • In this paper, we describe a process for optimally designing a ring-type permanent magnet thrust bearing. The bearing consists of two sets of permanent magnet rings. One set is located inside the other set. An axial offset between the two sets creates axial force, which results in a thrust bearing function. In order to realize an optimal design of the bearing where the required load capacity of the bearing is achieved with the least magnet volume, we derived analytical design equations by adopting the equivalent current sheet (ECS) method. We considered the following two types of magnet arrays: axial arrays and Halbach arrays. These two types of arrays are optimized using the analytical design equations. The results of the optimization are verified using three dimensional (3D) finite element analyses (FEA). The results show that the Halbach array can achieve the required load capacity with less amount of permanent magnet than the axial array does. The efficacy of the ECS method is also verified by using 3D FEA. It is found that the accuracy of ECS method is more sensitive to the underlying assumptions for the Halbach array than for the axial array.