• Title/Summary/Keyword: finite rings

Search Result 199, Processing Time 0.026 seconds

A Finite Element Analysis of Elastomeric O-ring Performance and Structure when subjected to Foreign Objects (유한요소해석을 이용한 이물질이 고무오링과 구조물에 미치는 영향과 성능 연구)

  • Pack, Inseok;Rhee, Heejang;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.28-34
    • /
    • 2017
  • Elastomeric o-ring performance and structure when subjected to a foreign object is studied using finite element analysis (FEA). Elastomeric o-rings have been studied using 2D analysis for a long time. Contact pressure is an important factor in o-ring design. When contact pressure is lower than applied pressure, leaking, vibration, and noise can occur; resulting in decreased output. In this study, we compared 2D and 3D analyses of elastomeric o-rings. Similar results were shown for 2D and 3D contact pressure. However, when an o-ring encounters foreign object matter, 3D analysis is required because contact pressure in every direction needs to be considered. We determined the influence of foreign matter on o-ring performance and structure by analyzing 10 cases with different clearances in a 3D model. Therefore, an o-ring encountering foreign object matter must be analyzed in 3D with the result included in the o-ring design.

Deformation Characteristics and Sealing Performance of Metallic O-rings for a Reactor Pressure Vessel

  • Shen, Mingxue;Peng, Xudong;Xie, Linjun;Meng, Xiangkai;Li, Xinggen
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.533-544
    • /
    • 2016
  • This paper provides a reference to determine the seal performance of metallic O-rings for a reactor pressure vessel (RPV). A nonlinear elastic-plastic model of an O-ring was constructed by the finite element method to analyze its intrinsic properties. It is also validated by experiments on scaled samples. The effects of the compression ratio, the geometrical parameters of the O-ring, and the structure parameters of the groove on the flange are discussed in detail. The results showed that the numerical analysis of the O-ring agrees well with the experimental data, the compression ratio has an important role in the distribution and magnitude of contact stress, and a suitable gap between the sidewall and groove can improve the sealing capability of the O-ring. After the optimization of the sealing structure, some key parameters of the O-ring (i.e., compression ratio, cross-section diameter, wall thickness, sidewall gap) have been recommended for application in megakilowatt class nuclear power plants. Furthermore, air tightness and thermal cycling tests were performed to verify the rationality of the finite element method and to reliably evaluate the sealing performance of a RPV.

Die Stress Reduction Design and Mechanical Properties Analysis of Warm Forging Process for the Application of Warm-Closed Forging of Automative Steering Unit Yoke (자동차 조향장치 부품 요크의 온간 밀폐 단조 적용을 위한 금형 응력 저감 설계 및 온간 단조품의 기계적 특성 분석)

  • Seong, S.G.;Kim, K.H.;Lee, Y.S.;Lee, S.Y.;Yoon, E.Y.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.51-56
    • /
    • 2022
  • In this study, finite element analyses were performed by applying a stress ring and split die design to relieve the tensile stress acting on the die due to high surface pressure during warm-closed forging. The applied material was a yield-ratio-control-steel (YRCS). It was used without quenching or tempering after forging. In the case of stress rings design, the number of stress rings and the tolerance for shrink fit were different. Vertical and horizontal splits were applied for insert die split design. Case 5 die with three stress rings, 0.2 % shrink fit tolerance, and vertical split was selected as an effective die design for tensile stress reduction. Based on die stress reduction analyses, Case 5 die for warm-closed forging was produced and smooth forgeability was secured, making it possible to manufacture forging product of yoke with the required geometry. In addition, controlled cooling using warm forging heat was applied to secure mechanical properties of yokes. When oil cooling was used for direct controlled cooling after warm-closed forging, a relatively uniform Rockwell hardness distribution and high mechanical properties could be obtained.

Quantitative Analysis of Effect of Shrink Fit in Cold Forging (냉간단조에서 금형 열박음 영향의 정량적 분석)

  • Li, Qiushi;Kim, Min-Cheol;Jung, Dong-Chan;Son, Yo-Hun;Joun, Man-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.301-307
    • /
    • 2011
  • In this paper, effects of major design parameters of cold forging dies on die mechanics are quantitatively investigated with emphasis on shrink fit using a thermoelastic finite element method. A ball-stud cold forging process found in a cold forging company is selected as a test process and the effects of die insert material, magnitude of shrink fit, dimension of shrink ring, number of shrink rings, partition of die insert and clamping force on effective stress and circumferential stress are analyzed. It has shown that the number of shrink rings, magnitude of shrink fit, and Young's modulus of die insert material have strong influence on compressive circumferential stress in die insert but that the influence of the other design parameters is relatively weak.

Study on Failure in Outer Ring of Work Roll Bearing in Hot Rod Rolling Mill (열간 선재 압연기에서 작업롤 베어링의 외측링 파손에 관한 연구)

  • Byon, Sang-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.38-45
    • /
    • 2017
  • A finite element analysis-based approach which investigates the causes of the breakdown in the outer ring of the choke at hot rod rolling mill is presented. Two-dimensional drawings of the whole vertical-type mill stand are transformed into three-dimensional CAD models. Non-linear elasto-plastic deformation analysis of material at the roll gap is performed for computing roll force and torque of the work roll. Then, the reaction forces of the bearing rings together with a set of roller bearings that support the work roll are obtained by means of rigid body motion analysis. Finally, stress behaviors in the bearing rings together with a set of roller bearings that support the work roll are investigated by linear elastic analysis. Results reveal that stress at the contact area between the outer ring and roller bearing is extraordinary high when an internal gap between an external surface of the outer ring and the internal surface of the chock due to wear of the inside of the chock occurs.

A numerical stepwise approach for cavity expansion problem in strain-softening rock or soil mass

  • Zou, Jin-Feng;Yang, Tao;Ling, Wang;Guo, Wujun;Huang, Faling
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.225-234
    • /
    • 2019
  • A numerical stepwise approach for cavity expansion problem in strain-softening rock or soil mass is investigated, which is compatible with Mohr-Coulomb and generalized Hoek-Brown failure criteria. Based on finite difference method, plastic region is divided into a finite number of concentric rings whose thicknesses are determined internally to satisfy the equilibrium and compatibility equations, the material parameters of the rock or soil mass are assumed to be the same in each ring. For the strain-softening behavior, the strength parameters are assumed to be a linear function of deviatoric plastic strain (${\gamma}p^*$) for each ring. Increments of stress and strain for each ring are calculated with the finite difference method. Assumptions of large-strain for soil mass and small-strain for rock mass are adopted, respectively. A new numerical stepwise approach for limited pressure and plastic radius are obtained. Comparisons are conducted to validate the correctness of the proposed approach with Vesic's solution (1972). The results show that the perfectly elasto-plastic model may underestimate the displacement and stresses in cavity expansion than strain-softening coefficient considered. The results of limit expansion pressure based on the generalised H-B failure criterion are less than those obtained based on the M-C failure criterion.

3-D finite Element Analysis for Thermo-Mechanical Behavior of Laminated Carbon-Phenolic Composite Ring for Rocket Nozzle Insulator (로켓 노즐 내열부품용 탄소-페놀 복합재 적층링의 열기계적 거동에 대한 3차원 유한요소 해석)

  • Lee, Sun-Pyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.47-53
    • /
    • 2006
  • In this paper, the thermal insulator structure of a real rocket which is fabricated in a way that laminated composite rings are connected in series is analyzed using 3-dimensional axisymmetric finite element models. Simulation of cowl zone using a real operating conditions provides that the stress distribution in the laminated composite ring is largely influenced by ply-angles, axial dimensions, and boundary conditions. Notably the plylift that is the precursor to the wedge-out occurs in the ring-to-ring bonding region. It is hypothesized that after the plylift the wedge is dropped out due to the shear stresses in the ply-angle direction and axial compressive stresses.

Modeling for the Natural Vibration Analysis of a Rotating Thin Ring (회전하는 얇은 링의 고유진동 해석을 위한 모델링)

  • Kim, Chang-Boo;Kim, Sehee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.57-65
    • /
    • 2006
  • In this paper, we present the principle of virtual work, from which the exact non-linear equations of motion of a rotating ring can be derived, by using the theory of finite deformation. For a thin ring of which the effect of variation in curvature across the cross-section is neglected, the radial displacement and the extensional stress are determined from the principle of virtual work at the steady state where the ring is rotating with a constant angular velocity. And also we formulate systematically the governing equations concerned to the in-plane vibrations and the out-of-plane vibrations at the disturbed state by using the principle of virtual work which is expressed with the disturbed displacements about the steady state. The formulated governing equations are classified by four models along the cases of considering or neglecting all or partly the secondary effects of flexural shear, rotary inertia, circumferential extension, and twist inertia. The natural vibrations of thin rings are analyzed, and its results are compared and discussed.

Heat Transfer Analysis of Hydropneumatic Suspension Unit By Finite Element Method (유한요소법을 이용한 유기압 현수장치의 열전달 해석)

  • Bae, Jing-Do;Cho, Jin-Rae;Lee, Hong-Woo;Song, Jung-In;Lee, Jin-Kyoo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.531-536
    • /
    • 2004
  • In-arm type hydropeumatic suspension unit(ISU) is an equipment of armed tracked vehicle to absorb impact load and vibration from the irregular ground. During the operation of ISU, main piston moves forward and backward and oil flowing through damper transmits the external impact load to floating piston. Heat is generated in ISU by the oil pressure drop through the damper orifice and the friction between cylinder wall and two pistons. On the other hand, internal heat dissipatis outside via heat convection. Occurrence of high temperature can deteriorate durability of major components and basic function of ISU. And, it can cause fatal problem in the ISU life time and the sealing performance of piston rings. As well, the spring constant change of nitrogen gas that is caused by the temperature rise exerts the negative effect to the vehicle stability. Therefore, in this paper, we analyze the heat transfer analysis of the entire ISU unit, by finite element method, with the outside flow velocities 8m/s and 10m/s.

  • PDF

Modelling for the Natural Vibration Analysis of a Rotating Thin Ring (회전하는 얇은 링의 고유진동 해석을 위한 모델링)

  • Kim, Chang-Boo;Kim, Se-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.585-592
    • /
    • 2005
  • In this paper, we present the principle of virtual work, from which the exact non-linear equations of motion of a rotating ring can be derived, by using the theory of finite deformation For a thin ring of which the effect of variation in curvature across the cross-section is neglected, the radial displacement and the extensional stress are determined from the principle of virtual work at the steady state where the ring is rotating with a constant angular velocity. And also we formulate systematically the governing equations concerned to the in-plane vibrations and the out-of-plane vibrations at the disturbed state by using the principle of virtual work which is expressed with the disturbed displacements about the steady state. The formulated governing equations are classified by four models along the cases of considering or neglecting all or partly the secondary effects of flexural shear, rotary inertia, circumferential extension, and twist inertia. The natural vibrations of thin rings are analyzed, and its results are compared and discussed.

  • PDF