• Title/Summary/Keyword: finite line contact

Search Result 68, Processing Time 0.023 seconds

Dynamic Analysis of Guyline in the Offshore Guyed Towers Considering Sea Bed Contact Conditions (심해용 Guyed Tower 계류선의 해저면과의 접촉조건을 고려한 동적 해석)

  • 이명우;박우선;박영석
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.4
    • /
    • pp.244-254
    • /
    • 1991
  • The numerical analysis on tile behaviour of mooring system in the offshore guyed tower is presented. The governing equilibrium equations are derived by the principle of virtual work. The drag and inertia effects of fluid are included in a Morrison type equation. The finite element method is used in the computation. Geometric nonlinearities for the analysis of the mooring line are considered in which both modified Newton-Raphson method and Newmark-$\beta$ method are employed. Numerical experiments show the validity and the capability of the developed mathematical formulation.

  • PDF

Investigation of Boundary between Pohang and Janggi Basins by Electrical Resistivity Survey (전기비저항(電氣比抵抗) 탐사(探査)에 의한 포항분지(浦項盆地)와 장기분지의 경계규명(境界糾明))

  • Min, Kyung Duck;Yun, Hyesu;Moon, Hi-Soo;Lee, Hyun Koo;Lee, Dae-Ha
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.215-219
    • /
    • 1990
  • Geological and electrical resistivity surveys along the survey line of about 3 km between Kyungsangbukdo Youngilgun Hodong and Gwangmyungdong using by dipole-dipole electrode array method were carried out to examine the boundary and structural relationship between Tertiary Pohang and Janggi basins. Electrical resistivity data were interpreted qualitatively and quantitatively by means of pseudosection of apparent electrical resitivity distribution and finite difference method for two dimensional geologic structure model. The nearly vertical fault zone with low electrical resistivity value of 1-5 Ohm-m and widths of about 200m at the surface and 400 m at depth exists around 1.2 km west of national road between Ocheoneup and Yangbukmyun. Mudrocks, sandstones and tuffaceous rocks are widely distributed with electrical resistivity values of 6-77 Ohm-m. Especially, tuffaceous rocks with relatively high electrical resistivity value are predominant at eastern side of fault zone. Consequently, it is known that Pohang and Janggi basins are in fault contact.

  • PDF

Seismic response of single-arch large-span fabricated subway station structure

  • He, Huafei;Li, Zhaoping
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.101-113
    • /
    • 2022
  • A new type of fabricated subway station construction technology can effectively solve these problems. For a new type of metro structure form, it is necessary to clarify its mechanical properties, especially the seismic performance. A soil-structure elastoplastic finite element model is established to perform three-dimensional nonlinear dynamic time-history analysis based on the first fabricated station structure-Yuanjiadian station of Changchun Metro Line 2, China. Firstly, the nonlinear seismic response characteristics of the fabricated and cast-in-place subway stations under different seismic wave excitations are compared and analyzed. Then, a comprehensive analysis of several important parameters that may affect the seismic response of fabricated subway stations is given. The results show that the maximum plastic strain, the interlayer deformation, and the internal force of fabricated station structures are smaller than that of cast-in-place structure, which indicates that the fabricated station structure has good deformation coordination capability and mechanical properties. The seismic responses of fabricated stations were mainly affected by the soil-structure stiffness ratio, the soil inertia effect, and earthquake load conditions rarely mentioned in cast-in-place stations. The critical parameters have little effect on the interlayer deformation but significantly affect the joints' opening distance and contact stress, which can be used as the evaluation index of the seismic performance of fabricated station structures. The presented results can better understand the seismic responses and guide the seismic design of the fabricated station.

The Development of Third-Rail System Applied to Turn-out Section for Urban Maglev (도시형 자기부상열차 분기기 구간의 제3궤조 전차선 시스템 개발)

  • Min, Byong-Chan;Heo, Young-Tae;Hong, Du-Young;Lee, Won-Joo;Jo, Su-Yeon;Jeong, Nam-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3046-3051
    • /
    • 2011
  • The third-rail system is an important device supplying power directly to the Maglev train through physical contact with the collecting shoe. It is directly related to safety and reliability for the running of Maglev. However, most the third-rail system used in Korea depend on foreign product or technologies, Korea Urban Maglev in the development of appropriate power feeding is urgent. In particular, the turnout section is the weakness point in the system because bending force by turnout section movement and fatigue caused by repetitive motion as well as the expansion by temperature, the forces by Maglev collecting shoe is added th the third-rail. Therefore, this paper proposes the third-rail system appropriate for Korean Urban Maglev of turnout section. To verify the structural stability of POSCO ICT third-rail system, the finite element analysis and physical testing was performed. The third-rail is fixed on each side of the turn-out section steel structure by epoxy insulation supporter and the integral behaviors are occurred. Therefore, the maximum horizontal displacements of each support are investigated and then, it is applied to finite element model of the third-rail to investigate the moments and stress. Also, the bending test about one million times and Expansion Joint for the third-rail was performed. The third-rail system safety and reliability was identified by test line on Korea Institute of Machinery & Materials in Deajeon for under the actual usage environment such as the Maglev and turn-out operation.

  • PDF

A Study on the Errors for the Improved Version of the Virtual Transmission-Line Model (개선된 가상의 전송선로 모델의 오차 연구)

  • 조유선;김세윤;김영식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.971-981
    • /
    • 2002
  • An open-ended coaxial probe method has been considered as one of effective tools for measuring electrical properties of its contacted material without shaping and fitting. The measured reflection coefficient at the probe's end is able to convert into the corresponding complex permittivity by employing the improved version of virtual transmission-line model Presented by our lab already. But the error of complex permittivity converted by equivalent model increases as the operating frequency ascends high. The errors of complex permittivity in the open-ended coaxial probe can be yielded compositively by the imperfect contact or probe, manufacture error of probe and complex permittivity error of reference material etc. Therefore it is necessary to limit the problem to identify the error causes in high frequency. In this paper, the errors which are resulted from the measurement of reflection coefficient are removed by using the FDTD(Finite-Difference Time-Domain) method, the error causes are limited the conversion model problem. And the error study of the improved conversion model is performed from several viewpoints. At first, the local minimum of parameter to be calculated by the iteration method in the conversion model is checked. At second, the modeling of the equivalent model is checked in the frequency range. From this study, we know the valid range of the improved conversion model.

A Study on Wear-Life Prediction of Conductor Roll Polisher in EGL Polishing Process (EGL 공정용 컨덕터 롤 폴리셔 수명 예측에 관한 연구)

  • Ku, Ja-Kyung;Ko, Jong-Min;Ku, Tae-Wan;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1062-1069
    • /
    • 2011
  • In electro-galvanizing line to manufacture the electro-galvanized steel sheet, polishing system is required to maintain clean surface of conductor roll and to secure the quality of the steel sheet. At the same time, prediction and decision of the replacement cycle for felt material and its brush installed in the polishing system is also important because the brush is directly contacted on the conductor roll surface. In this study, the polishing system has been designed which the brush is repetitive translating according to the longitudinal direction of the conductor roll. Furthermore, the prediction on the wear-life of the felt material used for the brush is performed using the contact pressure extracted by finite element analysis. And to verify the predicted wear-life of the felt material, the experimental study is also carried out. From the comparison result between the predicted and the measured wear-life of the felt material, it is presented that the wear-life and the replacement cycle of the felt material are well predicted by considering a wear compensation factor, and the wear compensation factor is useful and reasonable.

Effect of Implant Length on the Immediate Loading at the Anterior Maxilla (즉시하중시 상악 전치부에 식립된 임플란트 길이 변화에 따른 응력 분포의 삼차원 유한요소 연구)

  • Lee, Joon-Seok;Kim, Myung-Joo;Kwon, Ho-Beom;Lim, Young-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.3
    • /
    • pp.255-265
    • /
    • 2009
  • Recently many studies have been published on application of immediate loaded implants. However, the immediate loading protocol has not been well documented. The purpose of the present study was to evaluate the stress distribution between bone-implant interfaces and the effect of implant length in the anterior maxilla using 3 dimensional finite element analyses. The diameter 4.0 mm threaded type implants with different length(8.5 mm, 10.0 mm, 11.5 mm, 13.0 mm, 15.0 mm) were used in this study. The bone quality of anterior maxillary bone block was assumed to D3 bone. Bone-implant interfaces of immediately loaded implant were constructed using a contact element for simulating the non osseointegration status. For simplification of all the processing procedures, all of the material assumed to be homogenous, isotropic, and linearly elastic. The 178 N of static force was applied on the middle of the palatoincisal line angle of the abutment with $120^{\circ}$ angle to the long axis of abutment. Maximum von Mises stress were concentrated on the labial cortical bone of the implant neck area, especially at the cortical-cancellous bone interfaces. Compared the different length, highest peak stress value was observed at the 8.5 mm implants and the results indicated a tendency towards favorable stress distribution on the bone, when the length was increased. Presence of cortical bone was very important to immediate loading, and it appears that implants of a length more than 13 mm are preferable for immediate loading at the anterior maxilla.

Study on Structural Integrity and Dynamic Characteristics of Knuckle Parts of KTX Anti-Roll Bar (KTX 고속열차 안티롤바 너클부의 동특성 및 구조 안전성 평가)

  • Jeon, Kwang Woo;Shin, Kwang Bok;Kim, Jin Woo;Jeong, Yeon Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1035-1041
    • /
    • 2013
  • To evaluate the structural integrity and dynamic characteristic of the knuckle part of a KTX anti-roll bar, an experimental and a numerical approach were used in this study. In the experimental approach, the acceleration and strain data for the knuckle parts of the KTX and KTX-SANCHUN anti-roll bar were respectively measured to evaluate and compare its structural dynamic characteristics under the operating environments of the Honam line. In the numerical approach, the evaluation of its structural integrity was conducted using LS-DYNA 3D, and then, the reliability of the finite element model used was ensured by a comparative evaluation with the experiment. The numerical results showed that the stress and velocity field of the knuckle part composed of a layered structure of a thin steel plate and rubber were more moderate than those of the knuckle part made of only a thick steel block owing to the reduction of relative contact between the knuckle and the connecting rod. It was found that the knuckle part made of a thin steel plate and rubber was recommended as the best solution to improve its structural integrity resulting from the elastic behavior of the KTX anti-roll bar being enabled under a repeating external force.