• 제목/요약/키워드: finite layer methods

검색결과 120건 처리시간 0.022초

CFRP 모델링 기법에 따른 CFRP-Al합금 SPR 접합공정의 수치해석 정확도 분석 (Analysis of the Numerical Simulation Accuracy in the CFRP-Al Alloy SPR Joint Process According to the CFRP Modeling Method)

  • 김성호;박남수;송정한;노우람;박근영;배기현
    • 소성∙가공
    • /
    • 제29권5호
    • /
    • pp.265-271
    • /
    • 2020
  • The purpose of this paper is to analyze the numerical simulation accuracy according to the CFRP modeling method in the CFRP-Al alloy SPR (Self-Piercing Rivet) joint process. The mechanical properties of the CFRP, aluminum sheet are precisely obtained from the tensile test according to the loading direction. Additionally, the hardening curve of rivet was calculated from the inverse analysis of the machined rivet-ring compression test. For the CFRP-Al alloy SPR simulation, two kinds of the CFRP modeling methods were established based on the continuum and layer-by-layer approaches. The simulation results showed that the CFRP layer-by-layer modeling method can provide more reliable prediction shape of the fractured sheets and deformed rivet. This simulation technique can be used in evaluating the CFRP-Metal SPR performance and designing the SPR process conditions.

이중층 라이너에서 폭발 재료 분포에 따른 변형 특성 수치해석 (Numerical Analysis of Deformation Characteristics in the Double-Layer Liner According to Explosive Material Distribution)

  • 문상호;김시조;이창희;이성
    • 한국군사과학기술학회지
    • /
    • 제19권5호
    • /
    • pp.618-628
    • /
    • 2016
  • The development of new concepts of liners is required in order to effectively neutralize the enemy's attack power concealed in the armored vehicles. A multiple-layer liner is one of possibilities and has a mechanism for explosion after penetrating the target which is known as "Behind Armor Effect." The multiple-layer explosive liner should have sufficient kinetic energy to penetrate the protective structure and explosive material react after target penetration. With this in mind, double-layer liner materials were obtained by cold spray coating methods and these material properties were experimentally characterized and used in this simulation for double-layer liners. In this study, numerical simulations in the three different layer types, i.e., single, A/B, A/B/A in terms of the layer location were verified in terms of finite element mesh sizes and numerical results for the jet tip velocity, kinetic energy, and the corresponding jet deformation characteristics were analysed in detail depending on the structure of layer types.

Analysis of flow through dam foundation by FEM and ANN models Case study: Shahid Abbaspour Dam

  • Shahrbanouzadeh, Mehrdad;Barani, Gholam Abbas;Shojaee, Saeed
    • Geomechanics and Engineering
    • /
    • 제9권4호
    • /
    • pp.465-481
    • /
    • 2015
  • Three-dimensional simulation of flow through dam foundation is performed using finite element (Seep3D model) and artificial neural network (ANN) models. The governing and discretized equation for seepage is obtained using the Galerkin method in heterogeneous and anisotropic porous media. The ANN is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning, using the water level elevations of the upstream and downstream of the dam, as input variables and the piezometric heads as the target outputs. The obtained results are compared with the piezometric data of Shahid Abbaspour's Dam. Both calculated data show a good agreement with available measurements that demonstrate the effectiveness and accuracy of purposed methods.

점진적 파손해석 기법을 이용한 복합재 체결부의 강도해석 (Strength Estimation of Composite Joints Based on Progressive Failure Analysis)

  • 신소영;박노회;강경국;권진회;이상관;변준형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.163-167
    • /
    • 2001
  • A two-dimensional progressive failure analysis method is presented for the strength characterization of the composite joints under pin loading. The eight-nodes laminated she]1 element is utilized based on the updated Lagrangian formulation. The criteria by Yamada-Sun, Tsai-Wu, and the maximum stress are used for the failure estimation. The stiffness of failed layer is degraded by the complete unloading method. No factor depending on test is included in the finite element analysis except for the material strength and stiffness. Total 20 plate specimens with and without hole are tested to validate the finite element prediction. The Tsai-Wu failure criterion most conservatively estimates the strength of laminate, and the maximum stress criterion yields the highest strength because it does not consider the coupling of the failure modes. The strength by Yamada-Sun method neglecting the matrix failure effect are located between other two methods and shows best agreement with test result for laminate with hole.

  • PDF

Influence of the presence of defects on the stresses shear distribution in the adhesive layer for the single-lap bonded joint

  • Benchiha, Aicha;Madani, Kouider
    • Structural Engineering and Mechanics
    • /
    • 제53권5호
    • /
    • pp.1017-1030
    • /
    • 2015
  • In this study, the finite element method was used to analyze the distribution of the adhesive shear stresses in the single-lap bonded joint of two plates 2024-T3 aluminum with and without defects. The effects of the adhesive properties (shear modulus, the thickness and the length of the adhesive were highlighted. The results prove that the shear stresses are located on the free edges of the adhesively bonding region, and reach maximum values near the defect, because the concentration of high stress occurs near this area.

초음속 연소기에서의 혼합과 연소현상에 관한 수치해석 (Numerical Simulation of Mixing and Combustion in a Normal Injection of the Scramjet)

  • 문수연;이충원;손창현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.475-480
    • /
    • 2001
  • The flowfield of transverse jet in a supersonic air stream subjected to shock wave turbulent boundary layer interactions is simulated numerically by Generalized Taylor Galerkin(GTG) finite element methods. Effects of turbulence are taken into account with a two-equation $(k-\varepsilon)$ model with a compressibility correction. Injection pressures and slot widths are varied in the present study. Pressure, separation extents, and penetration heights are compared with experimental data. Favorable comparisons with experimental measurements are demonstrated.

  • PDF

기능경사재를 위한 균질화와 이산화-미시역학 모델에 대한 비교 수치해석 (Comparative Numerical Analysis of Homogenized and Discrete-Micromechanics Models for Functionally Graded Materials)

  • 하대율;이홍우;조진래
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.399-404
    • /
    • 2000
  • Functionally graded materials(FGMs) involve dual-phase graded layers in which two different constituents are mixed continuously and functionally according to a given volume fraction. For the analysis of their thermo-mechanical response, conventional homogenized methods have been widely employed in order to estimate equivalent material properties of the graded layer. However, such overall estimations are insufficient to accurately predict the local behavior. In this paper, we compare the thermo-elastic behaviors predicted by several overall material-property estimation techniques with those obtained by discrete analysis models utilizing the finite element method, for various volume fractions and loading conditions.

  • PDF

Low Attenuation Waveguide for Structural Health Monitoring with Leaky Surface Waves

  • Bezdek, M.;Joseph, K.;Tittmann, B.R.
    • 비파괴검사학회지
    • /
    • 제32권3호
    • /
    • pp.241-262
    • /
    • 2012
  • Some applications require structural health monitoring in inaccessible components. This paper presents a technique useful for Structural Health Monitoring of double wall structures, such as double wall steam pipes and double wall pressure vessels separated from an ultrasonic transducer by three layers. Detection has been demonstrated at distances in excess of one meter for a fixed transducer. The case presented here is for one of the layers, the middle layer, being a fluid. For certain transducer configurations the wave propagating in the fluid is a wave with low velocity and attenuation. The paper presents a model based on wave theory and finite element simulation; the experimental set-up and observations, and comparison between theory and experiment. The results provide a description of the technique, understanding of the phenomenon and its possible applications in Structural Health Monitoring.

Numerical analysis of the behaviour of repaired surface cracks with bonded composite patch

  • Merzoug, Mohamed;Boulenouar, Abdelkader;Benguediab, Mohamed
    • Steel and Composite Structures
    • /
    • 제25권2호
    • /
    • pp.209-216
    • /
    • 2017
  • In this paper, the analysis of the behavior of surface cracks in finite-thickness plates repaired with a Boron/Epoxy composite patch is investigated using three-dimensional finite element methods. The stress intensity factor at the crack-front was used as the fracture criteria. Using the Ansys Parametric Design Language (APDL), the stress intensities at the internal and external positions of repaired surface crack were compared. The effects of the mechanical and geometrical properties of the adhesive layer and the composite patch on the variation of the stress intensity factor at the crack-front were examined.

Design Optimization of Axial Flow Compressor Blades with Three-Dimensional N avier-Stokes Solver

  • Lee, Sang-Yun;Kim, Kwang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제14권9호
    • /
    • pp.1005-1012
    • /
    • 2000
  • Numerical optimization techniques combined with a three-dimensional thin-layer Navier-Stokes solver are presented to find an optimum shape of a stator blade in an axial compressor through calculations of single stage rotor-stator flow. Governing differential equations are discretized using an explicit finite difference method and solved by a multi-stage Runge-Kutta scheme. Baldwin-Lomax model is chosen to describe turbulence. A spatially-varying time-step and an implicit residual smoothing are used to accelerate convergence. A steady mixing approach is used to pass information between stator and rotor blades. For numerical optimization, searching direction is found by the steepest decent and conjugate direction methods, and the golden section method is used to determine optimum moving distance along the searching direction. The object of present optimization is to maximize efficiency. An optimum stacking line is found to design a custom-tailored 3-dimensional blade for maximum efficiency with the other parameters fixed.

  • PDF