• 제목/요약/키워드: finite element numerical simulations

Search Result 436, Processing Time 0.02 seconds

Understanding and predicting physical properties of rocks through pore-scale numerical simulations (공극스케일에서의 시뮬레이션을 통한 암석물성의 이해와 예측)

  • Keehm, Young-Seuk;Nur, Amos
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.201-206
    • /
    • 2006
  • Earth sciences is undergoing a gradual but massive shift from description of the earth and earth systems, toward process modeling, simulation, and process visualization. This shift is very challenging because the underlying physical and chemical processes are often nonlinear and coupled. In addition, we are especially challenged when the processes take place in strongly heterogeneous systems. An example is two-phase fluid flow in rocks, which is a nonlinear, coupled and time-dependent problem and occurs in complex porous media. To understand and simulate these complex processes, the knowledge of underlying pore-scale processes is essential. This paper presents a new attempt to use pore-scale simulations for understanding physical properties of rocks. A rigorous pore-scale simulator requires three important traits: reliability, efficiency, and ability to handle complex microstructures. We use the Lattice-Boltzmann (LB) method for singleand two-phase flow properties, finite-element methods (FEM) for elastic and electrical properties of rocks. These rigorous pore-scale simulators can significantly complement the physical laboratory, with several distinct advantages: (1) rigorous prediction of the physical properties, (2) interrelations among the different rock properties in a given pore geometry, and (3) simulation of dynamic problems, which describe coupled, nonlinear, transient and complex behavior of Earth systems.

  • PDF

Vehicle Collision Simulation for Roadblocks in Nuclear Power Plants Using LS-DYNA (LS-DYNA를 이용한 원자력발전소의 로드블록에 대한 차량 충돌 시뮬레이션)

  • SeungGyu Lee;Dongwook Kim;Phill-Seung Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.113-120
    • /
    • 2023
  • This paper introduces a simulation method for the collision between roadblocks and vehicles using LS-DYNA. The need to evaluate the performance of anti-ram barriers to prepare for vehicle impact has increased since vehicle impact threats have been included as a design criterion for nuclear power plants. Anti-ram barriers are typically certified for their performance through collision experiments. However, because Koreas has no performance testing facilities for anti-ram barriers, their performance can only be verified through simulations. LS-DYNA is a specialized program for collision simulation. Various organizations, including NCAC, distributes numerical models that have been validated for their accuracy with collision tests. In this study, we constructed a finite element model of the most critical vehicle barrier module and simulated collision between roadblocks and vehicles. The calculated results were verified by applying the validation criteria for vehicle safety facility collision simulations of NCHRP 179.

A Study about Effectiveness and Usefulness of a FEM Slug Test Model (유한 요소기법을 이용한 Slug시험 모델의 타당성 및 유용성 연구)

  • 한혜정;최종근
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • Slug tests are the most widely used field method for quantification of hydraulic conductivity of porous media. Well recovery is affected by well casing, borehole radii, screened length, hydraulic conductivity, and specific storage of porous media. In this study, a new slug tests model was developed through finite element approximation and the validity and usefulness of the model were tested in various ways. Water level fluctuation in a well under slug test and cons-equent groundwater flow in the surrounding porous medium were appropriately coupled through estimation of well-flux using an iteration technique. Numerical accuracy of the model was verified using the Cooper et al. (1967) solution. The model has advantages in simulations for monitored slug tests, partial penetration, and inclusion of storage factor. Volume coverage of slug tests is significantly affected by storage factor. Magnitude and speed of propagation of head changes from a well increases as storage factor becomes low. It will be beneficial to use type curves of monitored head transients in the surrounding porous formation for estimation of specific storage. As the vertical component of groundwater flow is enhanced, the influence of storage factor on well recovery decreases. For a radial-vertical flow around a partially penetrated well, deviations between hydraulic estimates by various methods and data selection of recovery curve are negligible on practical purposes, whereas the deviations are somewhat significant for a radial flow.

  • PDF

Study on the effect of tail void grouting on the short- and long-term surface settlement in the shield TBM Tunneling using numerical analysis (쉴드TBM터널에서 뒤채움 주입이 지반의 단기·장기 침하에 미치는 영향에 대한 수치해석적 연구)

  • Oh, Ju-Young;Park, Hyunku;Kim, Dohyoung;Chang, Seokbue;Lee, Seungbok;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.265-281
    • /
    • 2017
  • For shallow tunnel constructions, settlement of the ground surface is a main issue. Recent technical developments in shield TBM tunneling technique have enabled a decrease in such settlements based on tunneling with ground deformation controls. For this objective, the tail void grouting is a common practice. Generally surface settlements in a soil of low permeability occur during a tunnel construction but also during a long period after completion of the tunnel. The long-term settlements occur mainly due to consolidation around the tunnel. The consolidation process is caused and determined by the tail void grouting which leads to an excess pore water pressure in the vicinity of the tunnel. Because of this, the grouting pressure has a strong effect on the long-term settlements in the shield tunneling. In order to investigate this effect, a series of coupled hydro-mechanical 3D finite element simulations have been performed. The results show that an increase in grouting pressure reduces the short-term settlements, but in many cases, it doesn't lead to a reduction of the final settlements after the completion of consolidation. Thereby, the existence of a critical grouting pressure is identified, at which the minimal settlements are expected.

Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (II) (불규칙파-해저지반-혼성방파제의 상호작용에 의한 지반과 구조물의 동적응답에 관한 수치시뮬레이션 (II))

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.174-183
    • /
    • 2014
  • Seabed beneath and near coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank to account for an irregular wave field. In the condition of an irregular wave field, the dynamic wave pressure and water flow velocity acting on the seabed and the surface boundary of the composite breakwater structure were estimated. Simulation results were used as input data in a finite element computer program for elastoplastic seabed response. Simulations evaluated the time and spatial variations in excess pore water pressure, effective stress, and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the results of the analysis, the liquefaction potential at the seabed in front and rear of the composite breakwater was identified. Since the liquefied seabed particles have no resistance to force, scour potential could increase on the seabed. In addition, the strength decrease of the seabed due to the liquefaction can increase the structural motion and significantly influence the stability of the composite breakwater. Due to limitations of allowable paper length, the studied results were divided into two portions; (I) focusing on the dynamic response of structure, acceleration, deformation of seabed, and (II) focusing on the time variation in excess pore water pressure, liquefaction, effective stress path in the seabed. This paper corresponds to (II).

Numerical Simulation of Dynamic Response of Seabed and Structure due to the Interaction among Seabed, Composite Breakwater and Irregular Waves (I) (불규칙파-해저지반-혼성방파제의 상호작용에 의한 지반과 구조물의 동적응답에 관한 수치시뮬레이션 (I))

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.160-173
    • /
    • 2014
  • Seabed beneath and near coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank to account for an irregular wave field. In the condition of an irregular wave field, the dynamic wave pressure and water flow velocity acting on the seabed and the surface boundary of the composite breakwater structure were estimated. Simulation results were used as input data in a finite element computer program for elastoplastic seabed response. Simulations evaluated the time and spatial variations in excess pore water pressure, effective stress, and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the results of the analysis, the liquefaction potential at the seabed in front and rear of the composite breakwater was identified. Since the liquefied seabed particles have no resistance to force, scour potential could increase on the seabed. In addition, the strength decrease of the seabed due to the liquefaction can increase the structural motion and significantly influence the stability of the composite breakwater. Due to limitations of allowable paper length, the studied results were divided into two portions; (I) focusing on the dynamic response of structure, acceleration, deformation of seabed, and (II) focusing on the time variation in excess pore water pressure, liquefaction, effective stress path in the seabed. This paper corresponds to (I).