• Title/Summary/Keyword: finite element models

Search Result 2,548, Processing Time 0.029 seconds

Investigating the Subsea Sandwich Pipeline Integrity under Complex Loadings (선형 매칭 기법을 활용한 해저 샌드위치 파이프의 복합하중 영향도 분석)

  • Geo-Rak Park;Kyu Song;Youngjae Choi;Nak-Kyun Cho;Chung-Soo Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.119-125
    • /
    • 2021
  • Subsea pipelines are widely used to transport hydrocarbons from ultra-deep seawater to facilities on the coast. A sandwich pipe is a pipe-in-pipe system in which the annulus between the two concentric steel pipes is filled with polymer cores and fillers for insulation and structural reinforcement. Sandwich pipeline is always exposed to complex loading such as bending moment, bulking, internal and external pressures caused by installation, operation and environmental factors. This research provides insights into the structural integrity of sandwich pipeline exposed to complex loading conditions using a linear matching method (LMM). The finite element model of the sandwich pipeline has been generated from previous research, and the model validation is performed by comparing the results of the linear analysis between the two models. The temperature dependent material properties are used to simulate the behavior of real pipeline, and the elastic-perfectly plastic (EPP) model has been taken into account for the material non-linearity. Numerical results provide comprehensive insights into the structural response of the sandwich pipeline under monotonic and cyclic loading and provide notable points about the evaluation of the plastic collapse limit and the elastic shakedown limit of the sandwich pipeline.

Dynamic response of a laminated hybrid composite cantilever beam with multiple cracks & moving mass

  • Saritprava Sahoo;Sarada Prasad Parida;Pankaj Charan Jena
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.529-540
    • /
    • 2023
  • A novel laminated-hybrid-composite-beam (LHCB) of glass-epoxy infused with flyash and graphene is constructed for this study. The conventional mixture-rule and constitutive-relationship are modified to incorporate filler and lamina orientation. Eringen's non-local-theory is used to include the filler effect. Hamilton's principle based on fifth-order-layer-wise-shear-deformation-theory is applied to formulate the equation of motion. The analogous shear-spring-models for LHCB with multiple-cracks are employed in finite-element-analysis (FEA). Modal-experimentations are conducted (B&K-analyser) and the findings are compared with theoretical and FEA results. In terms of dimensionless relative-natural-frequencies (RNF), the dynamic-response in cantilevered support is investigated for various relative-crack-severities (RCSs) and relative-crack-positions (RCPs). The increase of RCS increases local-flexibility in LHCB thus reductions in RNFs are observed. RCP is found to play an important role, cracks present near the end-support cause an abrupt drop in RNFs. Further, multiple cracks are observed to enhance the nonlinearity of LHCB strength. Introduction of the first to third crack in an intact LHCB results drop of RNFs by 8%, 10%, and 11.5% correspondingly. Also, it is demonstrated that the RNF varies because of the lamina-orientation, and filler addition. For 0° lamina-orientation the RNF is maximum. Similarly, it is studied that the addition of graphene reduces weight and increases the stiffness of LHCB in contrast to the addition of flyash. Additionally, the response of LHCB to moving mass is accessed by appropriately modifying the numerical programs, and it is noted that the successive introduction of the first to ninth crack results in an approximately 40% to 120% increase in the dynamic-amplitude-ratio.

Load-transferring mechanism and evaluation theory of bolt with single and double nut fasteners

  • Qiyu Li;Dachang Zhang;Hao Xu;Yibi Li;Weiqun Chen;Kaixuan Zhang
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.261-276
    • /
    • 2023
  • The use of the ordinary double nut (i.e., ODN) composed of a master nut (i.e., M-nut) and a slave nut (i.e., S-nut) is a highly efficient method to prevent bolts loosening. A novel double nut (i.e., FODN) composed of a master nut (i.e., M-nut) and flat slave nut (i.e., FS-nut) is proposed to save raw materials. The bolt fastening tests with single nut, ODN and FODN are performed to investigate the preload and counterbalance forces. Corresponding finite element analysis (FEA) models are established and validated by comparing the preload with the experimental results. The load-bearing capacity, the extrusion effect, and the contact stress of each engaged thread for ODN and FODN are observed by FEA. The experimental and simulated results revealed that the bolt fastening with double-nut has different load-transferring mechanisms from single-nut. Nevertheless, for double-nut/bolt assemblies, the FS-nut can provide load transfer that is like that of the S-nut, and the FODN is a reasonable and reliable fastening method. Furthermore, based on the theory of Yamamoto, a formula considering the extrusion effect is proposed to calculate the preload distribution of the double-nut, which is applicable to varying thicknesses of slave-nuts in double-nut/bolt assemblies.

Microplane Constitutive Model for Granite and Analysis of Its Behavior (마이크로플레인 모델을 이용한 화강암의 3차원 구성방정식 개발 및 암석거동 모사)

  • Zi Goangseup;Moon Sang-Mo;Lee In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.2
    • /
    • pp.41-53
    • /
    • 2006
  • The brittle materials like rocks show complicated strain-softening behavior after the peak which is hard to model using the classical constitutive models based on the relation between strain and stress tensors. A kinematically constrained three-dimensional microplane constitutive model is developed for granite. The model is verified by fitting the experimented data of Westerly granite and Bonnet granite. The triaxial behavior of granite is well reproduced by the model as well as the uniaxial behavior. We studied the development of the fracture zone in granite during blasting impact using the model with the standard finite element method. All the results obtained from the microplane model developed are compared to those from the linear elasticity model which is commonly used in many researches and practices. It is found that the nonlinearity of rocks sigificantly affects the results of analysis.

Normalized Subgrade Analytical Model Considering Stress-Dependency and Modulus Degradation (응력의존성 및 탄성계수 감쇠특성을 고려한 노상토의 정규화 해석모델)

  • Kim, Ji-Hwan;Kang, Beong-Joon;Lee, Jun-Hwan;Kweon, Gi-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.37-46
    • /
    • 2008
  • Application of resilient modulus, representing mechanical behavior of pavement materials, has become general concept for pavement design, analysis and maintenance after '86 AASHTO selected it as a basic input property of subgrade. It is known that resilient modulus of domestic subgrade soil is affected greatly by material factors, such as water content and dry weight unit, and stress components, such as deviatoric stress and confining stress, while effects of loading frequency and loading repeat were regarded negligible. If design based on resilient modulus is to be successfully implemented, design input variables of relevant models should be able to reflect local conditions. In this study, generalized mechanical model for subgrade is proposed. Model parameters are estimated from test results. Verification of the model was performed through finite element analysis using the proposed model, which showed good agreement with measured results of pavement deflections.

Compressive behavior of concrete-filled square stainless steel tube stub columns

  • Dai, Peng;Yang, Lu;Wang, Jie;Ning, Keyang;Gang, Yi
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • Concrete-filled square stainless steel tubes (CFSSST), which possess relatively large flexural stiffness, high corrosion resistance and require simple joint configurations and low maintenance cost, have a great potential in constructional applications. Despite that the use of stainless steel may result in high initial cost compared to their conventional carbon steel counterparts, the whole-life cost of CFSSST is however considered to be lower, which offers a competitive choice in engineering practice. In this paper, a comprehensive experimental and numerical program on 24 CFSSST stub column specimens, including 3 austenitic and 3 duplex stainless steel square hollow section (SHS) stub columns and 9 austenitic and 9 duplex CFSSST stub columns, has been carried out. Finite element (FE) models were developed to be used in parametric analysis to investigate the influence of the tube thickness and concrete strength on the ultimate capacities more accurately. Comparisons of the experimental and numerical results with the predictions made by design guides ACI 318, ANSI/AISC 360, Eurocode 4 and GB 50936 have been performed. It was found that these design methods generally give conservative predictions to the ultimate capacities of CFSSST stub columns. Improved calculation methods, developed based on the Continuous Strength Method, have been proposed to provide more accurate estimations of the ultimate resistances of CFSSST stub columns. The suitability of these proposals has been validated by comparison with the test results, where a good agreement between the predictions and the test results have been achieved.

Seismic fragility curves for a concrete bridge using structural health monitoring and digital twins

  • Rojas-Mercedes, Norberto;Erazo, Kalil;Di Sarno, Luigi
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.503-515
    • /
    • 2022
  • This paper presents the development of seismic fragility curves for a precast reinforced concrete bridge instrumented with a structural health monitoring (SHM) system. The bridge is located near an active seismic fault in the Dominican Republic (DR) and provides the only access to several local communities in the aftermath of a potential damaging earthquake; moreover, the sample bridge was designed with outdated building codes and uses structural detailing not adequate for structures in seismic regions. The bridge was instrumented with an SHM system to extract information about its state of structural integrity and estimate its seismic performance. The data obtained from the SHM system is integrated with structural models to develop a set of fragility curves to be used as a quantitative measure of the expected damage; the fragility curves provide an estimate of the probability that the structure will exceed different damage limit states as a function of an earthquake intensity measure. To obtain the fragility curves a digital twin of the bridge is developed combining a computational finite element model and the information extracted from the SHM system. The digital twin is used as a response prediction tool that minimizes modeling uncertainty, significantly improving the predicting capability of the model and the accuracy of the fragility curves. The digital twin was used to perform a nonlinear incremental dynamic analysis (IDA) with selected ground motions that are consistent with the seismic fault and site characteristics. The fragility curves show that for the maximum expected acceleration (with a 2% probability of exceedance in 50 years) the structure has a 62% probability of undergoing extensive damage. This is the first study presenting fragility curves for civil infrastructure in the DR and the proposed methodology can be extended to other structures to support disaster mitigation and post-disaster decision-making strategies.

Sealing design optimization of nuclear pressure relief valves based on the polynomial chaos expansion surrogate model

  • Chaoyong Zong;Maolin Shi;Qingye Li;Tianhang Xue;Xueguan Song;Xiaofeng Li;Dianjing Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1382-1399
    • /
    • 2023
  • Pressure relief valve (PRV) is one of the important control valves used in nuclear power plants, and its sealing performance is crucial to ensure the safety and function of the entire pressure system. For the sealing performance improving purpose, an explicit function that accounts for all design parameters and can accurately describe the relationship between the multi-design parameters and the seal performance is essential, which is also the challenge of the valve seal design and/or optimization work. On this basis, a surrogate model-based design optimization is carried out in this paper. To obtain the basic data required by the surrogate model, both the Finite Element Model (FEM) and the Computational Fluid Dynamics (CFD) based numerical models were successively established, and thereby both the contact stresses of valve static sealing and dynamic impact (between valve disk and nozzle) could be predicted. With these basic data, the polynomial chaos expansion (PCE) surrogate model which can not only be used for inputs-outputs relationship construction, but also produce the sensitivity of different design parameters were developed. Based on the PCE surrogate model, a new design scheme was obtained after optimization, in which the valve sealing stress is increased by 24.42% while keeping the maximum impact stress lower than 90% of the material allowable stress. The result confirms the ability and feasibility of the method proposed in this paper, and should also be suitable for performance design optimizations of control valves with similar structures.

Numerical analysis of acoustic radiation efficiency of plate structures with air bubble layers (기포층을 갖는 판 구조물의 음향 방사 효율에 관한 수치해석)

  • Sung-Ju Park;Kookhyun Kim;Cheolsoo Park;Jaehyuk Lee;Keunhwa Lee;Cheolwon Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.227-232
    • /
    • 2023
  • Underwater noise pollution has a significant impact on the marine environment. This study proposed a simple approach to estimate the acoustic radiation efficiency of structures with air bubble layers. The method considered the insertion loss caused by the air bubble layer through post-processing of numerical results, assuming that insertion loss is equivalent to attenuation as demonstrated by previous studies. The proposed approach was validated by comparing it with a fully coupled analysis for plate structure models. The commercial finite element program COMSOL Multiphysics was used for the acoustic-structure interaction analysis, and the acoustic characteristics of air bubble layer for the fully coupled analysis was simulated by on the Commander and Prosperetti theory. The trends indicated good agreement between the simple approach and the fully coupled analysis in terms of radiation efficiency. It is confirmed that the proposed method is providing insight into the principal mechanism of underwater noise reduction for the bubble layer on the wedge-shaped structure.

A simplified model proposal for non-linear analysis of buildings

  • Abdul Rahim Halimi;Kanat Burak Bozdogan
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.353-364
    • /
    • 2023
  • In this study, a method has been proposed for the static and dynamic nonlinear analysis of multi-storey buildings, which takes into account the contribution of axial deformations in vertical load-bearing elements, which are especially important in tall and narrow structures. Shear deformations on the shear walls were also taken into account in the study. The presented method takes into account the effects that are not considered in the fishbone and flexural-shear beam models developed in the literature. In the Fishbone model, only frame systems are modeled. In the flexural shear beam model developed for shear wall systems, shear deformations and axial deformations in the walls are neglected. Unlike the literature, with the model proposed in this study, both shear deformations in the walls and axial deformations in the columns and walls are taken into account. In the proposed model, multi-storey building is represented as a sandwich beam consisting of Timoshenko beams pieced together with a double-hinged beam. At each storey, the total moment capacities of the frame beams and the coupled beams in the coupled shear walls are represented as the equivalent shear capacity. On the other hand, The sums of individual columns and walls moment at the relevant floor level are represented as equivalent moment capacity at that floor level. At the end of the study, examples were solved to show the suitability of the proposed method in this study. The SAP2000 program is employed in analyses. In a conclusion, it is observed that among the solved examples, the proposed sandwich beam model gives good results. As can be seen from these results, it is seen that the presented method, especially in terms of base shear force, gives very close results to the detailed finite element method.