DOI QR코드

DOI QR Code

Load-transferring mechanism and evaluation theory of bolt with single and double nut fasteners

  • Qiyu Li (College of Civil Engineering, Research Center of Tower Mast Structure, Nanjing Tech University) ;
  • Dachang Zhang (College of Civil Engineering, Research Center of Tower Mast Structure, Nanjing Tech University) ;
  • Hao Xu (Wuxi Metro Construction Co., Ltd.) ;
  • Yibi Li (College of Civil Engineering, Research Center of Tower Mast Structure, Nanjing Tech University) ;
  • Weiqun Chen (Nanrui Electric Power Design Corporation Limited) ;
  • Kaixuan Zhang (The IT Electronics Eleventh Design & Research Institute Scientific and Technological Engineering Corporation Limited)
  • Received : 2022.04.02
  • Accepted : 2023.03.21
  • Published : 2023.04.25

Abstract

The use of the ordinary double nut (i.e., ODN) composed of a master nut (i.e., M-nut) and a slave nut (i.e., S-nut) is a highly efficient method to prevent bolts loosening. A novel double nut (i.e., FODN) composed of a master nut (i.e., M-nut) and flat slave nut (i.e., FS-nut) is proposed to save raw materials. The bolt fastening tests with single nut, ODN and FODN are performed to investigate the preload and counterbalance forces. Corresponding finite element analysis (FEA) models are established and validated by comparing the preload with the experimental results. The load-bearing capacity, the extrusion effect, and the contact stress of each engaged thread for ODN and FODN are observed by FEA. The experimental and simulated results revealed that the bolt fastening with double-nut has different load-transferring mechanisms from single-nut. Nevertheless, for double-nut/bolt assemblies, the FS-nut can provide load transfer that is like that of the S-nut, and the FODN is a reasonable and reliable fastening method. Furthermore, based on the theory of Yamamoto, a formula considering the extrusion effect is proposed to calculate the preload distribution of the double-nut, which is applicable to varying thicknesses of slave-nuts in double-nut/bolt assemblies.

Keywords

References

  1. Abid, M. (2013), "The effect of bolt tightening methods and sequence on the performance of gasketed bolted flange joint assembly", Struct. Eng. Mech., 46(6), 843-852. https://doi.org/10.12989/sem.2013.46.6.843. 
  2. Ajaei, B.B. and Soyoz, S. (2020), "Analytical and experimental fatigue analysis of wind turbine tower connection bolts", Wind Struct., 31(1), 1-14. https://doi.org/10.12989/was.2020.31.1.001. 
  3. Bhattacharya, A., Sen, A. and Das, S. (2010), "An investigation on the anti-loosening characteristics of threaded fasteners under vibratory conditions", Mech. Mach. Theor., 45 (8), 1215-1225. https://doi.org/10.1016/j.mechmachtheory.2008.08.004. 
  4. Caccese, V., Mewer, R. and Vel, S.S. (2004), "Detection of bolt load loss in hybrid composite/metal bolted connections", Eng. Struct., 26(7), 895-906. https://doi.org/10.1016/j.engstruct.2004.02.008. 
  5. Carcaterra, B. and Ngaile, G. (2019), "Investigation of energy storage in bolted joint components and the development of a geometry selection design tool for Belleville washers", Eng. Struct., 178, 436-443. https://doi.org/10.1016/j.engstruct.2018.10.049. 
  6. Daidie, A., Chakhari, J. and Zghal, A. (2007), "Numerical model for bolted T-stubs with two bolt rows", Struct. Eng. Mech., 26(3), 343-361. https://doi.org/10.12989/sem.2007.26.3.343. 
  7. D'Antimo, M., Latour, M., Cavallaro, G.F., Jaspart, J.P., Ramhormozian, S. and Demonceau, J.F. (2020), "Short- and long- term loss of preloading in slotted bolted connections", J. Constr. Steel Res., 167, 105956. https://doi.org/10.1016/j.jcsr.2020.105956. 
  8. Dinger, G. and Friedrich, C. (2011), "Avoiding self-loosening failure of bolted joints with numerical assessment of local contact state", Eng. Fail. Anal., 18(8), 2188-2200. https://doi.org/10.1016/j.engfailanal.2011.07.012. 
  9. Dravid, S., Tripathi, K. and Chouksey, M. (2014), "Role of washers in controlling loosening of full threaded bolted joints", Procedia Technol., 14, 543-552. https://doi.org/10.1016/j.protcy.2014.08.069. 
  10. GB 1231 (2006), Specifications of High Strength Bolts with Large Hexagon Head, Large Hexagon Nuts, Plain Washers for Steel Structures, China Planning Press, Beijing, China. 
  11. GB 192 (2003), Common Thread Basic Tooth Type, China Standard Press Beijing, China. 
  12. GB 50233 (2014), Code for Construction and Acceptance of 110 kV-750 kV overhead Transmission Line, China Planning Press, Beijing, China. 
  13. Gong, H., Liu, J. and Ding, X. (2021), "Study on local slippage accumulation between thread contact surfaces and novel anti-loosening thread designs under transversal vibration", Tribol. Int., 153, 106558. https://doi.org/10.1016/j.triboint.2020.106558. 
  14. Gong, H., Liu, J. and Feng, H. (2022), "Review on anti-loosening methods for threaded fasteners", Chin. J. Aeronaut., 35(2), 47-61. https://doi.org/10.1016/j.cja.2020.12.038. 
  15. Goodier, R. and Sweeney, R. (1945), Loosening by Vibration of Threaded Fastening, Mechanical Engineering.
  16. Hosoya, N., Niikura, T., Hashimura, S., Kajiwara, I. and Giorgio-Serchi, F. (2020), "Axial force measurement of the bolt/nut assemblies based on the bending mode shape frequency of the protruding thread part using ultrasonic modal analysis", Measure., 162, 107914. https://doi.org/10.1016/j.measurement.2020.107914. 
  17. Izumi, S., Yokoyama, T., Kimura, M. and Sakai, S. (2009), "Loosening-resistance evaluation of double-nut tightening method and spring washer by three-dimensional finite element analysis", Eng. Fail. Anal., 16(5), 1510-1519. https://doi.org/10.1016/j.engfailanal.2008.09.027. 
  18. Junker, G.H. (1969), "New criteria for self-loosening of fasteners under vibration", Sae Transactions, 314-335. 
  19. Ksentini, O., Combes, B., Abbes, M.S., Daidie, A. and Haddar, M. (2015), "Simplified model to study the dynamic behaviour of a bolted joint and its self loosening", Struct. Eng. Mech., 55(3), 639-654. https://doi.org/10.12989/sem.2015.55.3.639. 
  20. Liu, S. (2018), "Simulation and experimental research on mechanical properties of main material joints of transmission tower MA", Eng, North China Electric Power University. (in Chinese) 
  21. Na, W.S. (2021), "Bolt loosening detection using impedance based non-destructive method and probabilistic neural network technique with minimal training data", Eng. Struct., 226, 111228. https://doi.org/10.1016/j.engstruct.2020.111228. 
  22. Nguyen, T.C., Huynh, T.C., Yi, J.H. and Kim, J.T. (2017), "Hybrid bolt-loosening detection in wind turbine tower structures by vibration and impedance responses", Wind Struct., 24(4), 385-403. https://doi.org/10.12989/was.2017.24.4.385. 
  23. Qin, Y., Zhang, J., Chen, Y., Shi, P., Xu, Y. and Shi, Z. (2021), "Tensile behavior of bolted through-diaphragm connections to SHS columns", Struct. Eng. Mech., 80(3), 355-363. https://doi.org/10.12989/sem.2021.80.3.355. 
  24. Sakai, T. (2003), An Enlarged Edition: An Outline of Threaded Fastening, Yokendo Ltd., Tokyo. 
  25. Shinbutsu, T., Amano, S., Takemasu, T., Kuwabara, T. and Shimura, J. (2017), "Thread rolling and performance evaluations of a new anti-loosening double thread bolt combining a single thread and multiple threads", Procedia Eng., 207, 603-608. https://doi.org/10.1016/j.proeng.2017.10.1028. 
  26. Wang, C., Zhang, Y. and Zhang, J. (2013), "Research on characteristics of thin and thick double nut locking mechanism", Sci. Technol. Innov. Appl., 30, 51. (in Chinese) 
  27. Yamamoto, A. (1980), The Theory and Computation of Threads Connection, Youkendo, Tokyo. 
  28. Yamamoto, A. and Kasei, S. (1982), "Evaluation of locking performance of threaded fastener locking devices by different types of thread-loosening tests", J. JPN Soc. Prec. Eng., 48(6), 801-806. 
  29. Yamamoto, A. and Kasei, S. (1981), "Comparative evaluation of threaded fastener locking devices by various type thread-loosening tests", Bull. JPN. Soc. Prec. Eng., 15(3), 197-198. 
  30. Zeng, S., Xu, D., Li, D., Li, G., Chang, J. and Fu, C. (2020), "A study on weathering steel bolts for transmission towers", J. Constr. Steel Res., 174, 106295. https://doi.org/10.1016/j.jcsr.2020.106295. 
  31. Zhang, D., Wang, G., Huang, F. and Zhang, K. (2020), "Load-transferring mechanism and calculation theory along engaged threads of high-strength bolts under axial tension", J. Constr. Steel Res., 172, 106153. https://doi.org/10.1016/j.jcsr.2020.106153. 
  32. Zhang, M., Zeng, D., Lu, L., Zhang, Y., Wang, J. and Xu, J. (2019), "Finite element modelling and experimental validation of bolt loosening due to thread wear under transverse cyclic loading", Eng. Fail. Anal., 104, 341-353. https://doi.org/10.1016/j.engfailanal.2019.05.001. 
  33. Zhu, L., Hong, J. and Jiang, X. (2016), "On controlling preload and estimating anti-loosening performance in threaded fasteners based on accurate contact modeling", Tribol. Int., 95, 181-191. https://doi.org/10.1016/j.triboint.2015.11.006. 
  34. Kasei, S. (2004), "Bearing surface slip and self-loosening of threaded fasteners (Consideration on the case of minute slippage)", Proceedings of the Mechanical Engineering Congress, Japan.