• 제목/요약/키워드: finite element analysis of structures

검색결과 3,258건 처리시간 0.031초

대공간 구조 시스템의 동적 해석을 위한 스펙트럴 요소법의 적용성 평가 (The evaluation of applicability of spectral element method for the dynamic analysis of the spatial structures)

  • 한상을;이상주;조준영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.789-794
    • /
    • 2007
  • Recently, the necessity of efficient and exact method to analyze structures is increasing with the importance of the seismic analysis. But the finite element method used in many field do not give the exact solution unless the length of the element is very short enough to represent the deformation of the element. Because the amount of computer calculation increase with the increasing of the number of degree of freedoms, the finite element method for the exact dynamic analysis of structures would not be efficient. To solve these problems, spectral clement method combined spectral method using the principle of wave mechanics and finite element method for the analysis of discrete models is applied to evaluate the behavior of the spatial structures. As a result of analysis. it becomes clear that the spectral element method is faster and more exact than the finite clement method.

  • PDF

다양한 복합소재를 적용한 지주구조의 유한요소 충돌 해석 (Finite Element Crash Analysis of Support Structures Made of Various Composite Materials)

  • 김규동;이상열
    • 복합신소재구조학회 논문집
    • /
    • 제6권1호
    • /
    • pp.45-50
    • /
    • 2015
  • This study performed a finite element crash analysis of support structures made of various composite materials for road facilities. The effects of different material properties of composites for various parameters are studied using the finite element commercial package for this study. In this study, the existing finite element analysis of composite post structures using the LS-DYNA program is further extended to compare dynamic behaviors against car crash of the structures made of various composite materials. The several numerical examples show the comparison of the nonlinear dynamic effects for different materials.

TCS요소론 이용한 인장 막구조물의 초기명상해석 및 응력변형해석 (Initial Shape Finding and Stress-Deformation Analysis of Pretensioned Membrane Structures with Triangular Constants Strain Element)

  • 고혁준;송평훈;송호산
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.230-237
    • /
    • 2004
  • In this study, equation of finite element is formulated to analyze relations of large deformation-small deformation considering geometrical nonlinear for membrane structure. Total Lagrangian Formulation(TLF) is introduced to formulate theory and equation of motion considering Triangular Constant Strain(TCS) element in finite, element analysis is formulated. Finite element program is made by equation of motion considering TLF. This study analyzed a variety of examples, so compared with the past results.

  • PDF

Enhanced finite element modeling for geometric non-linear analysis of cable-supported structures

  • Song, Myung-Kwan;Kim, Sun-Hoon;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • 제22권5호
    • /
    • pp.575-597
    • /
    • 2006
  • Enhanced three-dimensional finite elements for geometrically nonlinear analysis of cable-supported structures are presented. The cable element, derived by using the concept of an equivalent modulus of elasticity and assuming the deflection curve of a cable as catenary function, is proposed to model the cables. The stability functions for a frame member are modified to obtain a numerically stable solution. Various numerical examples are solved to illustrate the versatility and efficiency of the proposed finite element model. It is shown that the finite elements proposed in this study can be very useful for geometrically nonlinear analysis as well as free vibration analysis of three-dimensional cable-supported structures.

유한요소법과 경계요소법을 이용한 수중에서의 탄성구조물의 진동모드해석 및 모델링 기법 (Modelling Technique and Model Analysis of Submerged Structures Using Finite Element Method and Boundary Element Method)

  • 김관주;오상륜
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.319-324
    • /
    • 2000
  • This paper shows hot to model the submerged elastic structures and adequate analysis tools for modal behavior when using finite element and boundary element method. Four different cases are reviewed depending on the location of the water and air. First case is that structures are filled with air and water is located outside. Second case is opposite to case one. These cases are solved by direct approach using collocation procedure. Third case is that water is located both sides of structures. Last case is that air is located both sides. These cases are solved by indirect approach using variational procedure. As analysis tools harmonic frequency sweep analysis and eigenvalue iteration method are selected to obtain the natural frequencies of vibrating submerged structures depending on the cases. Results are compared with closed form solutions of submerged spherical shell.

  • PDF

Evaluation of Probabilistic Finite Element Method in Comparison with Monte Carlo Simulation

  • 이재영;고홍석
    • 한국농공학회지
    • /
    • 제32권E호
    • /
    • pp.59-66
    • /
    • 1990
  • Abstract The formulation of the probabilistic finite element method was briefly reviewed. The method was implemented into a computer program for frame analysis which has the same analogy as finite element analysis. Another program for Monte Carlo simulation of finite element analysis was written. Two sample structures were assumed and analized. The characteristics of the second moment statistics obtained by the probabilistic finite element method was examined through numerical studies. The applicability and limitation of the method were also evaluated in comparison with the data generated by Monte Carlo simulation.

  • PDF

압전지능구조물의 최적설계를 위한 민감도 해석 (Sensitivity analysis for optimal design of piezoelectric structures)

  • 김재환
    • 소음진동
    • /
    • 제8권2호
    • /
    • pp.267-273
    • /
    • 1998
  • This study aims at performing sensitivity analysis of piezoelectric smart structure for minimizing radiated noise from the structure, The structure consists of a flat plate on which disk shaped piezoelectric actuator is mounted, and finite element modeling is used for the structure. The finite element modeling uses a combination of three dimensional piezoelectric, flat shell and transition elements so thus it can take into account the coupling effects of the piezoelectric device precisely and it can also reduce the degrees of freedom of the finite element model. Electric potential on the piezoelectric actuator is taken as a design variable and total radiated power of the structure is chosen as an objective function. The objective function can be represented as Rayleigh's integral equation and is a function of normal displacements of the structure. For the convenience of computation, all degrees of freedom of the finite element equation is condensed out except the normal displacements of the structure. To perform the design sensitivity analysis, the derivative of the objective function with respect to the normal displacements is found, and the derivative of the norma displacements with respect to the design variable is calculated from the finite element equation by using so called the adjoint variable method. The analysis results are compared with those of the finite difference method, and shows a good agreement. This sensitivity analysis is faster and more accurate than the finite difference method. Once the sensitivity analysis program is used for gradient-based optimizations, one could achieve a better convergence rate than non-derivative methods for optimal design of piezoelectric smart structures.

  • PDF

강성계수의 전달에 의한 평판 구조물의 구조해석 (Structural Analysis of Plate Structures by Transfer of Stiffness Coefficient)

  • 최명수
    • 동력기계공학회지
    • /
    • 제11권1호
    • /
    • pp.92-97
    • /
    • 2007
  • It is important to compute the structural analysis of plate structures in structural design. In this paper, the author uses the finite element-transfer stiffness coefficient method (FE-TSCM) for the structural analysis of plate structures. The FE-TSCM is based on the concept of the successive transmission of the transfer stiffness coefficient method and the modeling technique of the finite element method (FEM). The algorithm for in-plane structural analysis of a rectangular plate structure is formulated by using the FE-TSCM. In order to confirm the validity of the FE-TSCM for structural analysis of plate structures, two numerical examples for the in-plane structural analysis of a plate with triangular elements and the bending structural analysis of a plate with rectangular elements are computed. The results of the FE-TSCM are compared with those of the FEM on a personal computer.

  • PDF

Progressive fracture analysis of concrete using finite elements with embedded displacement discontinuity

  • Song, Ha-Won;Shim, Byul;Woo, Seung-Min;Koo, Ja-Choon
    • Structural Engineering and Mechanics
    • /
    • 제11권6호
    • /
    • pp.591-604
    • /
    • 2001
  • In this paper, a finite element with embedded displacement discontinuity which eliminates the need for remeshing of elements in the discrete crack approach is applied for the progressive fracture analysis of concrete structures. A finite element formulation is implemented with the extension of the principle of virtual work to a continuum which contains internal displacement discontinuity. By introducing a discontinuous displacement shape function into the finite element formulation, the displacement discontinuity is obtained within an element. By applying either a nonlinear or an idealized linear softening curve representing the fracture process zone (FPZ) of concrete as a constitutive equation to the displacement discontinuity, progressive fracture analysis of concrete structures is performed. In this analysis, localized progressive fracture simultaneous with crack closure in concrete structures under mixed mode loading is simulated by adopting the unloading path in the softening curve. Several examples demonstrate the capability of the analytical technique for the progressive fracture analysis of concrete structures.