• 제목/요약/키워드: finite element ANSYS analysis

검색결과 785건 처리시간 0.039초

강화섬유 배치구조에 따른 MMC계면에서의 탄소성거동 평가 (Evaluation of elastic-plastic behavior in MMC interface according to the reinforced fiber placement structure)

  • 강지웅;김상태;권오헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.410-414
    • /
    • 2004
  • Under longitudinal loading continuous fiber reinforced metal matrix composite(MMC) have interpreted an outstanding performance. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In this study, elastic-plastic behavior of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber placement(square and hexagon) and fiber volume fractions were studied numerically. The interface was treated as three thin layer (with different properties) with a finite thickness between the fiber and the matrix. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

  • PDF

유한요소법을 이용한 압축력으로 인한 균열 표면의 마찰접촉 해석 (Frictional Contact Analysis of the compression-Induced Crack Surfaces using the Finite element Method)

  • 김방원;이기수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.517-522
    • /
    • 2000
  • When a body including a crack inside is subjected to the compressive forces, the crack is closed and sliding occurs on the crack surfaces. In this work, a subsurface crack subjected to a static or moving compressive load is analyzed with the finite element method considering friction on the crack surface. The friction on the crack surface is assumed to follow the Coulomb friction law. A numerical method based on the finite element method and iterative method is applied in this work. And the result is compared with the frictional contact of crack by ANSYS using contact 12 element. The numerical results of two methods are compared with the wellknown analytical solutions, and the accuracy of iterative method is checked..

  • PDF

Shear-deformable finite element for free vibrations of laminated composite beams with arbitrary lay-up

  • Kahya, Volkan;Karaca, Sebahat;Vo, Thuc P.
    • Steel and Composite Structures
    • /
    • 제33권4호
    • /
    • pp.473-487
    • /
    • 2019
  • A shear-deformable finite element model (FEM) with five nodes and thirteen degrees of freedom (DOFs) for free vibrations of laminated composite beams with arbitrary lay-up is presented. This model can be capable of considering the elastic couplings among the extensional, bending and torsional deformations, and the Poisson's effect. Lagrange's principle is employed in derivation of the equations of motion, and thus the element matrices are obtained. Comparisons of the present element's results with those in experiment, available literature and the 3D finite element analysis software (ANSYS(R)) are made to show its accuracy. Some further results are given as referencing for the future studies in vibrations of laminated composite beamst.

ANSYS를 활용한 공작기계 주축 시스템의 진동 모드 해석 자동화에 관한 연구 (A study on automation of modal analysis of a spindle system of machine tools using ANSYS)

  • 이봉구;최진우
    • 한국산학기술학회논문지
    • /
    • 제16권4호
    • /
    • pp.2338-2343
    • /
    • 2015
  • 본 연구에서는 범용 유한요소해석 소프트웨어인 ANSYS를 사용하여 공작기계 스핀들 시스템의 유한요소 해석 자동화를 위해서 해석 모델을 개발하고, 그것을 툴로 구현하였다. 그 구현을 위해 EXCEL의 VBA를 사용하였으며, 이로 인해서 사용자가 툴과 상호교류할 수 있도록 그래픽 인터페이스를 개발할 수 있었고, 데이터 정렬을 위해서 EXCEL의 spreadsheet를 사용할 수 있었다. ANSYS 언어를 사용하여 코드를 개발하였으며, 이는 인터페이스에 입력된 정보를 사용하여 형상 모델을 만들고, 순차적으로 해석 모델을 만들며, 마지막으로 유한요소해석 연산을 수행한다. 모델 생성과 해석의 자동화는 최소한의 시간과 노력으로 설계 중인 스핀들 시스템의 근사 최적 설계를 발견하도록 도울 수 있을 것이다.

상용 유한요소해석 프로그램을 이용한 축류송풍기의 내진해석 (Seismic Analysis of an Axial Blower Using a Commercial FEM Code)

  • 정진태;임형빈;김강성;허진욱
    • 한국소음진동공학회논문집
    • /
    • 제12권3호
    • /
    • pp.181-186
    • /
    • 2002
  • A seismic analysis is one of crucial design procedures of an axial blower used in nuclear power Plants. The blower should be operated even in ar emergency such as an earthquake. The blower should be designed in order to stand against an earthquake. For the seismic analysis, Ive perform the modal analysis and then evaluate the required response spectrum (PRS) from the given floor response spectrum (FRS). A finite element model of the blower is established by using a commercial FEM code of ANSYS. After the finite element modeling. the natural frequencies. the mode shapes and the participation factors are obtained from the modal analysis. The PRS is acquired by a numerical approach on the basis of the principle of mode superposition. We verify the structura safety of the axial blower and confirm the validity of the present seismic analysis results.

부분구조법을 이용한 부분핵연료 집합체의 수중 자유진동해석 (Free Vibration Analysis of the Partial Fuel Assembly Under Water Using Substructure Method)

  • 이강희;윤경호;송기남;김재용;이희남
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.246-249
    • /
    • 2006
  • Finite element vibration analysis of the trial 5x5 partial fuel assembly in the still water was performed using the substructure method. ANSYS software was used as a finite element modeling and modal analysis tool. The calculated natural frequencies of the partial fuel assembly were more consistent with the experimental results for the identical test model compared to the much larger solid model. This modeling technique can be utilized for the fuel assembly dynamic behavior analysis under normal operation, seismic and loss-of-coolant-accident analysis.

  • PDF

Design of a Magnet Assembly for an NMR Based Sensor Using Finite Element Analysis

  • Cho, S.I.;Chung, C.H.;Kim, S.C.
    • Agricultural and Biosystems Engineering
    • /
    • 제1권1호
    • /
    • pp.49-53
    • /
    • 2000
  • A magnet assembly is a critical element of a nuclear magnetic resonance(NMR) based sensor. Magnetic flux density and homogeneity are essential to its optimum performance. Geometry and magnet material properties determine the magnetic flux density and homogeneity of the assembly. This study was carried out to develop the design for a magnet assembly. A 2-D finite element model for the magnetic assembly was developed using ANSYS and evaluated the effects of adding shimming frames and steel bars in the corners of the rectangular steel cover which surrounded the magnet. The assembly was manufactured and evaluated. According to the ANSYS model, modified pole frames increased magnetic flux density by 8.3% and increased homogeneity by 83%. Addition of steel bars in the corners increased the magnetic flux density by 1%, and improved homogeneity up to three times. The difference between simulated and measured magnetic flux densities at the center point of the air gap was within 2.4%.

  • PDF

안전밸브의 유한요소해석 (Finite Element Method Analysis of Safety Valve)

  • 이종선
    • 한국산학기술학회논문지
    • /
    • 제13권9호
    • /
    • pp.3864-3868
    • /
    • 2012
  • 본 논문은 현장에서 사용되는 안전밸브를 분해하여 실측하였으며 실제형상을 3차원 자동 설계프로그램인 Solidworks를 사용하여 모델링하였다. 또한 모델링된 안전밸브에 대하여 3차원 유한요소해석 코드인 ANSYS를 사용하여 유한요소해석을 실시하였다. 유한요소해석을 통하여 안전밸브에 압력이 작용하였을 때 응력(stress), 변형률(strain), 변형량(deformation)을 구하였다.

RK4 다축 회전체 시스템의 동역학모델링 및 검증 (Modeling and Validation of RK4 Multi Axis Rotor system)

  • 권기범;한정삼;전병철;정준하;윤병동
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 춘계학술대회 논문집
    • /
    • pp.233-237
    • /
    • 2014
  • In this paper, the finite element modeling of the RK4 rotor kit system (RK4) and then frequency analysis and transient analysis, and was compared with the actual experimental results. RK4 manufactured by General Electric for the purpose of education and research. It is composed of two shaft, Two shaft is connected using a flexible coupling, one disk is mounted. The analytical model is modeled by using the ANSYS finite element analysis program commercially available. Based on impact hammer test results, material properties and the stiffness of the bearing and coupling was tuned. Considering the operating conditions and the vibration response of the analytical model were compared with experimental results.

  • PDF