• Title/Summary/Keyword: finite element (FE) model

Search Result 998, Processing Time 0.03 seconds

An Criterion to Minimize FE Mesh-Dependency in Concrete Plate under Impact Loading (충격하중을 받는 판형콘크리트 구조물의 요소의존성 최소화 기준식)

  • Kwak, Hyo-Gyoung;Gang, Han-Gul;Park, Lee-Ju
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.147-154
    • /
    • 2014
  • In the context of an increasing need for safety in concrete structures under blast and impact loading condition, the behavior of concrete under high strain rate condition has been an important issue. Since concrete subjected to impact loading associated with high strain rate shows quite different material behavior from that in the static state, several material models are proposed and used to describe the high strain rate behavior under blast and impact loading. In the process of modelling high strain rate conditions with these material models, mesh dependency in the used finite element(FE) is the key problem because simulation results under high strain-rate condition are quite sensitive to applied FE mesh size. This paper introduces an criterion which can minimize the mesh-dependency of simulation results on the basis of the fracture energy concept, and HJC(Holmquist Johnson Cook) model is examined to trace sensitivity to the used FE mesh size. To coincide with the purpose of the perforation simulation with a concrete plate under a projectile(bullet), the residual velocities of projectile after perforation are compared. The analytical results show that the variation of residual velocity with the used FE mesh size is quite reduced and accuracy of simulation results are improved by applying a unique failure strain value determined according to the proposed criterion.

A Study on Filament Winding Process of A CNG Composite Pressure vessel (CNG 복합용기의 필라멘트 와인딩 공정에 관한 연구)

  • Kim, C.;Kim, E. S.;Kim, J. H.;Choi, J. C.;Park, Y. S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.656-660
    • /
    • 2002
  • The fiber reinforced composite material is widely used in the multi-industrial field where the weight reduction of the infrastructure is demanded because of their high specific modulus and specific strength. Pressure vessels using this composite material in comparison with conventional metal vessels can be applied in the field where lightweight and the high pressure is demanded from the defense and aerospace industry to rocket motor case due to the merits which are energy curtailment by the weight reduction and decrease of explosive damage precede to the sudden explosion which is generated by the pressure leakage condition. In this paper, for nonlinear finite element analysis of E-glass/epoxy filament winding composite pressure vessel receiving an internal pressure, the standard interpretation model is developed by using the ANSYS 5.7.1, the general commercial program, which is verified as the accuracy and useful characteristic of the solution based on Auto LISP and ANSYS APDL. Both the preprocessor for doing exclusive analysis of filament winding composite pressure vessel and postprocessor that simplifies result of analysis have been developed to help the design engineers.

  • PDF

A Study on filament Winding Process of A CNG Composite Pressure Vessel (필라멘트 와인딩 압력용기의 최적설계와 CNG자동차 연료 충진용기 개발)

  • Kim, Eui-Soo;Kim, Ji-Hoon;Park, Yoon-So;Kim, Chul;Choi, Jae-Chan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.933-937
    • /
    • 2002
  • The fiber reinforced composite material is widely used in the multi-industrial field where the weight reduction of the infrastructure is demanded because of their high specific modulus and specific strength. Pressure vessels using this composite material in comparison with conventional metal vessels can be applied in the field where lightweight and the high pressure are demanded from the defense and aerospace industry to rocket motor case due to the merits which are energy cutdown the weight reduction and decrease of explosive damage preceding to the sudden explosion which is generated by the pressure leakage condition). In this paper, for nonlinear finite element analysis of E-glass/epoxy filament winding composite pressure vessel receiving an internal pressure, the standard interpretation model is developed by using the ANSYS, general commercial software, which is verified as the accuracy and useful characteristic of the solution based on Auto LISP and ANSYS APDL. Both the preprocessor for doing exclusive analysis of filament winding composite pressure vessel and postprocessor that simplifies result of analysis have been developed to help the design engineers.

  • PDF

Load Sharing Ratios Between the Cortex and Centrum in a Lumbar Vertebral Body with aging using Finite Element Method (유한 요소 법을 이용한 노화에 따른 요추의 피질 골과 해면 골 간의 하중 분담 비율)

  • Lim, JongWan
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.90-103
    • /
    • 2016
  • This research was aimed to analyze load sharing ratios between cortical shell and trabecular bone of a degraded lumbar vertebra with aging, and also evaluate elastic moduli assigned into an FE model, using finite element method. For the better analysis of trabecular bone, effective elastic moduli, that is, nominal elastic moduli divided by the volumetric porosities was used. The elastic moduli of the cortical shell suitable for the trabecular bone were obtained from the equations on the basis of idealized stress-strain relations, including areal porosities. To minimize numerical errors, p-element was used. Using eight parameters that refer to some published papers, the geometry of L3 with a removed posterior part. After the constant compressive displacement was applied, the load sharing ratios were obtained by using both every elastic strain energy and every vertical force between two bones in each 8-volume. As results, 1) according to an increase in age from 20-year to 80-year, load sharing ratios of trabecular bone decreased from 55% to 49%; 2) the maximal ratios of each bone were occurred in the mid-plane of centrums and the endplate of cortical shells, respectively; 3) effective elastic moduli assigned into a porous centrum/cortex were found to be adequate; 4) for load sharing ratios, the difference of two methods showed that the total ratios were almost same within less than 1% but the partial ratios at every depth were more or less different each other.

Numerical study on the effect of viscoelasticity on pressure drop and film thickness for a droplet flow in a confined microchannel

  • Chung, Chang-Kwon;Kim, Ju-Min;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.59-69
    • /
    • 2009
  • The prediction of pressure drop for a droplet flow in a confined micro channel is presented using FE-FTM (Finite Element - Front Tracking Method). A single droplet is passing through 5:1:5 contraction - straight narrow channel - expansion flow domain. The pressure drop is investigated especially when the droplet flows in the straight narrow channel. We explore the effects of droplet size, capillary number (Ca), viscosity ratio ($\chi$) between droplet and medium, and fluid elasticity represented by the Oldroyd-B constitutive model on the excess pressure drop (${\Delta}p^+$) against single phase flow. The tightly fitted droplets in the narrow channel are mainly considered in the range of $0.001{\leq}Ca{\leq}1$ and $0.01{\leq}{\chi}{\leq}100$. In Newtonian droplet/Newtonian medium, two characteristic features are observed. First, an approximate relation ${\Delta}p^+{\sim}{\chi}$ observed for ${\chi}{\geq}1$. The excess pressure drop necessary for droplet flow is roughly proportional to $\chi$. Second, ${\Delta}p^+$ seems inversely proportional to Ca, which is represented as ${\Delta}p^+{\sim}Ca^m$ with negative m irrespective of $\chi$. In addition, we observe that the film thickness (${\delta}_f$) between droplet interface and channel wall decreases with decreasing Ca, showing ${\delta}_f{\sim}Ca^n$ Can with positive n independent of $\chi$. Consequently, the excess pressure drop (${\Delta}p^+$) is strongly dependent on the film thickness (${\delta}_f$). The droplets larger than the channel width show enhancement of ${\Delta}p^+$, whereas the smaller droplets show no significant change in ${\Delta}p^+$. Also, the droplet deformation in the narrow channel is affected by the flow history of the contraction flow at the entrance region, but rather surprisingly ${\Delta}p^+$ is not affected by this flow history. Instead, ${\Delta}p^+$ is more dependent on ${\delta}_f$ irrespective of the droplet shape. As for the effect of fluid elasticity, an increase in ${\delta}_f$ induced by the normal stress difference in viscoelastic medium results in a drastic reduction of ${\Delta}p^+$.

A numerical and theoretical investigation on composite pipe-in-pipe structure under impact

  • Wang, Yu;Qian, Xudong;Liew, J.Y. Richard;Zhang, Min-Hong
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1085-1114
    • /
    • 2016
  • This paper investigates the transverse impact response for ultra lightweight cement composite (ULCC) filled pipe-in-pipe structures through a parametric study using both a validated finite element procedure and a validated theoretical model. The parametric study explores the effect of the impact loading conditions (including the impact velocity and the indenter shape), the geometric properties (including the pipe length and the dimensions of the three material layers) as well as the material properties (including the material properties of the steel pipes and the filler materials) on the impact response of the pipe-in-pipe composite structures. The global impact responses predicted by the FE procedure and by the theoretical model agree with each other closely. The parametric study using the theoretical approach indicates the close relationships among the global impact responses (including the maximum impact force and the maximum global displacement) in specimens with the equivalent thicknesses, proposed in the theoretical model, for the pipe-in-pipe composite structures. In the pipe-in-pipe composite structure, the inner steel pipe, together with the outer steel pipe, imposes a strong confinement on the infilled cement composite and enhances significantly the composite action, leading to improved impact resistance, small global and local deformations.

Machine Learning-based Rapid Seismic Performance Evaluation for Seismically-deficient Reinforced Concrete Frame (기계학습 기반 지진 취약 철근콘크리트 골조에 대한 신속 내진성능 등급 예측모델 개발 연구)

  • Kang, TaeWook;Kang, Jaedo;Oh, Keunyeong;Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.193-203
    • /
    • 2024
  • Existing reinforced concrete (RC) building frames constructed before the seismic design was applied have seismically deficient structural details, and buildings with such structural details show brittle behavior that is destroyed early due to low shear performance. Various reinforcement systems, such as fiber-reinforced polymer (FRP) jacketing systems, are being studied to reinforce the seismically deficient RC frames. Due to the step-by-step modeling and interpretation process, existing seismic performance assessment and reinforcement design of buildings consume an enormous amount of workforce and time. Various machine learning (ML) models were developed using input and output datasets for seismic loads and reinforcement details built through the finite element (FE) model developed in previous studies to overcome these shortcomings. To assess the performance of the seismic performance prediction models developed in this study, the mean squared error (MSE), R-square (R2), and residual of each model were compared. Overall, the applied ML was found to rapidly and effectively predict the seismic performance of buildings according to changes in load and reinforcement details without overfitting. In addition, the best-fit model for each seismic performance class was selected by analyzing the performance by class of the ML models.

A Biomechanical Study on the Various Factors of Vertebroplasty Using Image Analysis and Finite Element Analysis (의료영상 분석과 유한요소법을 통한 추체 성형술의 다양한 인자들에 대한 생체 역학적 효과 분석)

  • 전봉재;권순영;이창섭;탁계래;이권용;이성재
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.171-182
    • /
    • 2004
  • This study investigates the biomechanical efficacies of vertebroplasty which is used to treat vertebral body fracture with bone cement augmentation for osteoporotic patients using image and finite element analysis. Simulated models were divided into two groups: (a) a vertebral body, (b) a functional spinal unit(FSU). For a vertebral body model, the maximum axial displacement was investigated under axial compression to evaluate the effect of structural integrity. The stiffness of each FE model simulated was normalized by the stiffness of intact model. In the case of FSU model, 3 types of compression fractures were formulated to assess the influence on spinal curvature changes. The FSU models were loaded under compressive pressure to calculate the change of spinal curvature. The results according to the various factors suggest that vertebroplasty has the biomechanical efficacy of the increment of structural reinforcement in a patient who has relatively high level of BMD and a patient with the amount of 15%, PMMA injection of the cancellous bone volume. The spinal curvatures after compression fracture simulation vary from 9$^{\circ}$ to 17$^{\circ}$ of kyphosis compared to that the spinal curvature of normal model was -2.8$^{\circ}$ of lordosis. These spinal curvature changes cause the severe spinal deformity under the same loading. As the degree of compressive fracture increases the spinal deformity also increases. The results indicate that vertebroplasty has the increasing effect of the structural integrity regardless of the amount of PMMA or BMD and the restoration of decreased vertebral body height may be an important factor when the compressive fracture caused the significant height loss of vertebral body.

Energy Absorption Characteristics and Optimal Welding Space of Square Hat Type Thin-walled Tube (정사각 모자형 박판튜브의 에너지흡수특성 및 최적 용접간격)

  • Lee, Hyung-Yil;Kim, Bum-Joon;Han, Byoung-Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2703-2714
    • /
    • 2002
  • In this work, energy absorption characteristics and optimal welding space of spot-welded square hat type tube are investigated via quasi-static crush experiments and finite element (FE) analyses. A FE model reflecting the crush characteristics is established based on the experimentally observed crush mechanisms of specimens with welding spaces (20, 30 & 45 mm) and (25,40 & 55 mm) respectively for two specimen widths (60, 75 mm). The established FE model is then applied to other crush models of widths (50, 60 & 75 mm) with various welding spaces (20, 25, 30, 40, 45, 55, 75, 150, 300 mm) respectively. We examine the energy absorption characteristics with respect to the welding space for each specimen width. The outcome suggests an optimal spot welding space of square hat type thin-walled tube. Energy absorption is also presented in terms of yield strength of base metal, specimen thickness, width, and mean crushing force of spot-welded square hat type thin-walled tube.

Analysis of the Micro-Structural and Mechanical Properties in Human Femoral Head Trabecular Bone with and without Osteoporosis (대퇴골두 해면골의 미세구조 특성과 기계적 특성의 분석)

  • Won Ye-Yeon;Baek Myong-Hyun;Cui WenQuan;Chun KeyoungJin;Kim Man Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.519-523
    • /
    • 2004
  • This study investigates micro-structural and mechanical properties of trabecular bone in human femoral head with and without osteoporosis using Micro-CT and finite element-model. 15 cored trabecular bone specimens with 20min of diameter were obtained from femoral heads with osteoporosis (T-score > -2.5 ) resected for total hip arthroplasty, and 5 specimens were removed from femoral head of cadavers, which has no history of musculoskeletal diseases. A high-resolution micro-CT system was used to scan each specimen to obtain histomorphometry indices. Based on obtained micro-images(pixel size=21.31㎛), a FE-model was created to determine mechanical property indices. While non-osteoporosis group had increases trabecular thickness, bone volume, bone volume fraction, degree of anisotropy and trabecular number compared with those of non-osteoporotic group, the non-osteoporotic group showed decreases in trabecular separation and structure model index. Regarding the mechanical property indices, reaction force, apparent stress and young's modulus were 1ower in osteoporotic group than in non-osteoporotic group. Our data shows salient deteriorations in trabecular micro-structural and mechanical properties in human femoral head with osteoporosis.