• 제목/요약/키워드: finite difference modelling

검색결과 60건 처리시간 0.021초

다해상도 시간영역법의 수치적 분산특성과 안정조건 (Numerical Dispersive Characteristics and Stability Condition of the Multi-Resolution Time Domain(MRTD) Method)

  • 홍익표;유태훈;윤영중;박한규
    • 한국전자파학회논문지
    • /
    • 제7권4호
    • /
    • pp.328-335
    • /
    • 1996
  • The numerical dispersive characteristics and the numerical stability confition of the Multi-Resolution Time-Domain(MRTD) method are calculated. A dispersion analysis of the MRTD schemes including a comparison to Yee's Finite-Difference Time-Domain(FDTD) method is given. The superiority of the MRTD method to the spatial discretization is shown. The required computational memory can be reduced by using the MRTD method. We expect that the MRTD method will be very useful method for numerical modelling of electromagnetics.

  • PDF

Parameter Estimation for Age-Structured Population Dynamics

  • Cho, Chung-Ki;Kwon, YongHoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제1권1호
    • /
    • pp.83-104
    • /
    • 1997
  • This paper studies parameter estimation for a first-order hyperbolic integro-differential equation modelling one-sex population dynamics. A second-order finite difference scheme is used to estimate parameters such as the age-specific death-rate and the age-specific fertility from fully discrete observations on the population. The function space parameter estimation convergence of this scheme is proved. Also, numerical simulations are performed.

  • PDF

Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads

  • Fu, Qiang;Wu, Yang
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.241-254
    • /
    • 2019
  • A finite element approach is presented to examine ground vibration characteristics under various moving loads in a homogeneous half-space. Four loading modes including single load, double load, four-load, and twenty-load were simulated in a finite element analysis to observe their influence on ground vibrations. Four load moving speeds of 60, 80, 100, and 120 m/s were adopted to investigate the influence of train speed to the ground vibrations. The results demonstrated that the loading mode in a finite element analysis is reliable for train-induced vibration simulations. Additionally, a three-dimensional finite element model (3D FEM) was developed to investigate the dynamic responses of a track-ballast-embankment-ground system subjected to moving loads induced by high-speed trains. Results showed that vibration attenuations and breaks exist in the simulated wave fronts transiting through different medium materials. These tendencies are a result of the difference in the Rayleigh wave speeds of the medium materials relative to the speed of the moving train. The vibration waves induced by train loading were greatly influenced by the weakening effect of sloping surfaces on the ballast and embankment. Moreover, these tendencies were significant when the vibration waves are at medium and high frequency levels. The vibration waves reflected by the sloping surface were trapped and dissipated within the track-ballast-embankment-ground system. Thus, the vibration amplitude outside the embankment was significantly reduced.

축대칭 조건 및 경계면 요소를 이용한 Piled Raft 기초의 유한차분 모델링 연구 (Finite Difference Modeling of a Piled Raft Foundation with Axisymmetry Condition and Interface Element)

  • 유광호;김형렬;배상한
    • 대한토목학회논문집
    • /
    • 제35권4호
    • /
    • pp.853-861
    • /
    • 2015
  • 본 연구에서는 수치해석을 이용한 piled raft 기초의 복합적인 거동평가를 위해 축대칭 조건 및 경계면 요소를 적용한 유한차분해석 모델링 방법이 합리적인지 검증하였다. 이를 위해 실내모형실험 결과와 수치해석 결과를 비교 분석하여 piled raft 기초의 모델링 방법의 적합성을 평가하였다. 그리고 실제 현장조건을 고려한 기초 매개변수에 대한 민감도분석을 수행하여 raft의 하중분담율을 분석하였다. 연구 결과, 실내모형실험과 수치해석 결과에서 지지력-수직변위의 상관관계가 동일한 경향을 보였으며, piled raft 기초의 극한지지력과 raft의 하중분담율이 비교적 유사하게 산정되었다. 그리고 민감도분석을 통해 raft의 하중분담율은 약 33%~52% 사이에서 산정되어, 기존 연구 결과와 유사함을 확인하였다. 따라서 piled raft 기초는 축대칭 조건 및 경계면 요소를 이용하여 효과적으로 모델링될 수 있을 것으로 판단된다.

Modeling large underground structures in rock formations

  • e Sousa, Luis Ribeiro;Miranda, Tiago
    • Interaction and multiscale mechanics
    • /
    • 제4권1호
    • /
    • pp.49-64
    • /
    • 2011
  • A methodology for jointed rock mass characterization starts with a research based on geological data and tests in order to define the geotechnical models used to support the decision about location, orientation and shape of cavities. Afterwards a more detailed characterization of the rock mass is performed allowing the update of the geomechanical parameters defined in the previous stage. The observed results can be also used to re-evaluate the geotechnical model using inverse methodologies. Cases of large underground structures modeling are presented. The first case concerns the modeling of cavities in volcanic formations. Then, an application to a large station from the Metro do Porto project developed in heterogeneous granite formations is also presented. Finally, the last case concerns the modeling of large cavities for a hydroelectric powerhouse complex. The finite element method and finite difference method software used is acquired from Rocscience and ITASCA, respectively.

중성빔 입사장치에서 빔형성 구조의 입자모사 모형 (Particle Simulation Modelling of a Beam Forming Structure in Negative-Ion-Based Neutral Beam Injector)

  • Park, Byoung-Lyong;Hong, Sang-Hee
    • Nuclear Engineering and Technology
    • /
    • 제21권1호
    • /
    • pp.40-47
    • /
    • 1989
  • 중성입자입사 장치의 효율적인 빔형성 구조를 목적으로 정전기장 내에서 하전 입자의 움직임을 시간의 흐름에 따라 계산해 볼 수 있는 프로그램을 만들어 입자 모사 모형을 찾았다. 가속관 내의 입자의 움직임은 일정 시간 간격으로 계산하였고 전위는 유한차분법에 의해 Poisson 방정식에서 구하였다. 행렬식은 반복해법인 successive overrelaxation법을 사용하였고 전하밀도와 임자에 미치는 전기장의 힘을 구할 때는 cloud-in-cell모델을 사용하였다. 이 전자계산 코드를 사용하여 가속관 내 전극의 여러 조건들을 변화시켜가면서 빔형성 구조의 최적 설계를 수행하였다. 중성자 입사 장치의 가속관에서 가속 감속-전극간의 간격변화, 감속전극의 두께 변화, 가속 전극의 형태변화 등을 통하여 이들이 빔의 모양에 끼치는 영향을 조사하여 몇 가지 경우에 있어서 일정한 시간 간격으로 나타나는 입자들의 움직임을 예시하였다. 이 입자 모사모형을 통하여 가속전극의 형태가 빔 퍼짐에 가장 주요한 역할을 하는 것을 알았다.

  • PDF

Effect of new tunnel construction on structural performance of existing tunnel lining

  • Yoo, Chungsik;Cui, Shuaishuai
    • Geomechanics and Engineering
    • /
    • 제22권6호
    • /
    • pp.497-507
    • /
    • 2020
  • This paper presents the results of a three-dimensional numerical investigation into the effect of new tunnel construction on structural performance of existing tunnel lining. A three-dimensional finite difference model, capable of modelling the tunnel construction process, was adopted to perform a parametric study on the spatial variation of new tunnel location with respect to the existing tunnel with emphasis on the plan crossing angle of the new tunnel with respect to the existing tunnel and the vertical elevation of the new tunnel with respect to the existing one. The results of the analyses were arranged so that the effect of new tunnel construction on the lining member forces and stresses of the existing tunnel can be identified. The results indicate that when a new tunnel underpasses an existing tunnel, the new tunnel construction imposes greater impact on the existing tunnel lining when the two tunnels cross at an acute angle. Also shown are that the critical plan crossing angle of the new tunnel that would impose greater impact on the existing tunnel depends on the relative vertical location of the new tunnel with respect to the existing one, and that the overpassing new tunnel construction scenario is more critical than the underpassing scenario in view of the existing tunnel lining stability. Practical implications of the findings are discussed.

2D numerical modelling of soil-nailed structures for seismic improvement

  • Panah, Ali Komak;Majidian, Sina
    • Geomechanics and Engineering
    • /
    • 제5권1호
    • /
    • pp.37-55
    • /
    • 2013
  • An important issue in the design of soil-nailing systems, as long-term retaining walls, is to assess their stability during seismic events. As such, this study is aimed at simulating the dynamic behavior and failure pattern of nailed structures using two series of numerical analyses, namely dynamic time history and pseudo-static. These numerical simulations are performed using the Finite Difference Method (FDM). In order to consider the actual response of a soil-nailed structure, nonlinear soil behaviour, soil-structure interaction effects, bending resistance of structural elements and construction sequences have been considered in the analyses. The obtained results revealed the efficiency of both analysis methods in simulating the seismic failure mechanism. The predicted failure pattern consists of two sliding blocks enclosed by three slip surfaces, whereby the bottom nails act as anchors and the other nails hold a semi-rigid soil mass. Moreover, it was realized that an increase in the length of the lowest nails is the most effective method to improve seismic stability of soil-nailed structures. Therefore, it is recommended to first estimate the nails pattern for static condition with the minimum required static safety factor. Then, the required seismic stability can be obtained through an increase in the length of the lowest nails. Moreover, placement of additional long nails among lowest nails in existing nailed structures can be considered as a simple retrofitting technique in seismic prone areas.

Vibration analysis and FE model updating of lightweight steel floors in full-scale prefabricated building

  • Petrovic-Kotur, Smiljana P.;Pavic, Aleksandar P.
    • Structural Engineering and Mechanics
    • /
    • 제58권2호
    • /
    • pp.277-300
    • /
    • 2016
  • Cold-formed steel (CFS) sections are becoming an increasingly popular solution for constructing floors in residential, healthcare and education buildings. Their reduced weight, however, makes them prone to excessive vibrations, increasing the need for accurate prediction of CFS floor modal properties. By combining experimental modal analysis of a full-scale CFS framed building and its floors and their numerical finite element (FE) modelling this paper demonstrates that the existing methods (based on the best engineering judgement) for predicting CFS floor modal properties are unreliable. They can yield over 40% difference between the predicted and measured natural frequencies for important modes of vibration. This is because the methods were adopted from other floor types (e.g., timber or standard steel-concrete composite floors) and do not take into account specific features of CFS floors. Using the adjusted and then updated FE model, featuring semi-rigid connections led to markedly improved results. The first four measured and calculated CFS floor natural frequencies matched exactly and all relevant modal assurance criterion (MAC) values were above 90%. The introduction of flexible supports and more realistic modelling of the floor boundary conditions, as well as non-structural $fa{\c{c}}ade$ walls, proved to be crucial in the development of the new more successful modelling strategy. The process used to develop 10 identified and experimentally verified FE modelling parameters is based on published information and parameter adjustment resulting from FE model updating. This can be utilised for future design of similar lightweight steel floors in prefabricated buildings when checking their vibration serviceability, likely to be their governing design criterion.

자동차 엔진 냉각시스템의 컴퓨터 시뮬레이션 (Computer Simulation of an Automotive Engine Cooling System)

  • 원성필;윤종갑
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.58-67
    • /
    • 2003
  • An automotive engine cooling system is closely related with overall engine performances, such as reduction of fuel consumption, decrease of air pollution, and increase of engine life. Because of complex reaction between each component, the direct experiment, using a vehicle, takes high cost, long time, and slow response to the system change. Therefore, a computer simulation would provide the designer with an inexpensive and effective tool for design, development, and optimization of the engine cooling system over a wide range of operating conditions. In this work, it has been predicted the thermal performance of the engine cooling system in cases of stationary mode, constant speed mode, and city-drive mode by mathematical modelling of each component and numerical analysis. The components are engine, radiator, heater, thermostat, water pump, and cooling fans. Since the engine model is the most important, that is divided into eight sub-sections. The volume mean temperature of eight sub-sections are simultaneously calculated at a time. For detail calculation, the radiator and heater are also divided into many sub-sections like control volumes in finite difference method. Each sub-section is assumed to consist of three parts, coolant, tube with fin, and air. Hence it has been developed the simulation program that can be used in case of design and system configuration changes. The overall performance results obtained by the program were desirable and the time-traced tendencies of the results agreed fairly well with those of actual situations.