• Title/Summary/Keyword: finite connection-length

Search Result 57, Processing Time 0.019 seconds

Finite element model updating of an arch type steel laboratory bridge model using semi-rigid connection

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris;Kartal, Murat Emre;Adanur, Suleyman
    • Steel and Composite Structures
    • /
    • v.10 no.6
    • /
    • pp.541-561
    • /
    • 2010
  • This paper presents finite element analyses, experimental measurements and finite element model updating of an arch type steel laboratory bridge model using semi-rigid connections. The laboratory bridge model is a single span and fixed base structure with a length of 6.1 m and width of 1.1m. The height of the bridge column is 0.85 m and the maximum arch height is 0.95 m. Firstly, a finite element model of the bridge is created in SAP2000 program and analytical dynamic characteristics such as natural frequencies and mode shapes are determined. Then, experimental measurements using ambient vibration tests are performed and dynamic characteristics (natural frequencies, mode shapes and damping ratios) are obtained. Ambient vibration tests are performed under natural excitations such as wind and small impact effects. The Enhanced Frequency Domain Decomposition method in the frequency domain and the Stochastic Subspace Identification method in the time domain are used to extract the dynamic characteristics. Then the finite element model of the bridge is updated using linear elastic rotational springs in the supports and structural element connections to minimize the differences between analytically and experimentally estimated dynamic characteristics. At the end of the study, maximum differences in the natural frequencies are reduced on average from 47% to 2.6%. It is seen that there is a good agreement between analytical and experimental results after finite element model updating. Also, connection percentages of the all structural elements to joints are determined depending on the rotational spring stiffness.

Nonlinear Lateral Behavior and Cross-Sectional Stress Distribution of Concrete Rocking Columns (콘크리트 회전형 기둥의 비선형 횡방향 거동 및 단면응력 분포 분석)

  • Roh, Hwa-Sung;Hwang, Woong-Ik;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.285-292
    • /
    • 2012
  • Fixed connection is generally used for beam and column connections of concrete structures, but significant damages at the connection due to severe earthquakes have been reported. In order to reduce damages of the connection and improve seismic performance of the connection, several innovative connections have been suggested. One newly proposed connection type allows a rotation of the connection for applications in rotating or rocking beams, columns, and shear walls. Such structural elements would provide a nonlinear lateral force-displacement response since their contact depth developed during rotation is gradually reduced and the stress across the sections of the elements is non-linearly distributed around a contact area, which is called an elastic hinge region in the present study. The purpose of the present study is to define the elastic hinge region or length for the rocking columns, through investigating the cross-sectional stress distribution during their lateral behavior. Performing a finite element analysis (FEA), several parameters are considered including axial load levels (5% and 10% of nominal strength), different boundary conditions (confined-ends and cantilever types), and slenderness ratios (length/depth = 5, 7, 10). The FEA results showed that the elastic hinge length does not directly depend on the parameters considered, but it is governed by a contact depth only. The elastic hinge length started to develop after an opening state and increased non-linearly until a rocking point(pre-rocking). However, the length did not increase any more after the rocking point (post-rocking) and remained as a constant value. Half space model predicting the elastic hinge length is adapted and the results are compared with the numerical results.

Cyclic response and design procedure of a weak-axis cover-plate moment connection

  • Lu, Linfeng;Xu, Yinglu;Zheng, Huixiao;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.329-345
    • /
    • 2018
  • This paper systematically investigated the mechanical performance of the weak-axis cover-plate connection, including a beam end monotonic loading test and a column top cyclic loading test, and a series of parametric studies for exterior and interior joints under cyclic loading using a nonlinear finite element analysis program ABAQUS, focusing on the influences of the shape of top cover-plate, the length and thickness of the cover-plate, the thickness of the skin plate, and the steel material grade. Results showed that the strains at both edges of the beam flange were greater than the middle's, thus it is necessary to take some technical methods to ensure the construction quality of the beam flange groove weld. The plastic rotation of the exterior joint can satisfy the requirement of FEMA-267 (1995) of 0.03 rad, while only one side connection of interior joint satisfied ANSI/AISC 341-10 under the column top cyclic loading. Changing the shape or the thickness or the length of the cover-plate did not significantly affect the mechanical behaviors of frame joints no matter in exterior joints or interior joints. The length and thickness of the cover-plate recommended by FEMA 267 (1995) is also suitable to the weak-axis cover-plate joint. The minimum skin plate thickness and a design procedure for the weak-axis cover-plate connections were proposed finally.

Out-of-Plane Effective Length Factor of X-Bracing System (X-브레이싱의 면외 유효 좌굴길이 계수)

  • Moon, Ji Ho;Yoon, Ki Yong;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.129-137
    • /
    • 2007
  • In this study, the elastic out-of-plane buckling load and the effective length factor of X-bracing systems were studied. Points of the intersection of diagonals were modeled as a rigid connection or a pinned connection depending on the connection method of diagonals. The boundary condition of the intersection influences the buckling load of X-bracing systems. For each boundary condition of the intersection, effective out-of-plane length factors of X-bracing systems were derived as a function of the length ratio of tension and compression diagonals $L_P$/$L_T$, the applied force ratio of tension and compression diagonals T/P, and the Euler buckling load ratio of tension and compression diagonals $P_{ET}$/$P_{EP}$. The proposed effective out-of-plane length factors of X-bracing systems were compared with the results of previous researchers and those of the finite element analysis and their properties were verified. Finally, the effects of the boundary condition of the intersection on the out-of-plane buckling load of X-bracing systems were investigated.

Static behavior of novel RCS through-column-type joint: Experimental and numerical study

  • Nguyen, Xuan Huy;Le, Dang Dung;Nguyen, Quang-Huy
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.111-126
    • /
    • 2019
  • This paper deals with experimental investigation and modeling of the static behavior of a novel RCS beam-column exterior joint. The studied joint detail is a through-column type in which an H steel profile totally embedded inside RC column is directly welded to the steel beam. The H steel profile was covered by two supplementary plates in the joint area in order to avoid the stirrups resisting shear in the joint area. Two full-scale through-column-type RCS joints were tested under static loading. The objectives of the tests were to examine the connection performance and to highlight the contribution of two supplementary plates on the shear resistance of the joint. A reliable nonlinear 3D finite element model was developed using ABAQUS software to predict the response and behavior of the studied RCS joint. An extensive parametric study was performed to investigate the influences of the stirrups, the encased profile length and supplementary plate length on the behavior of the studied RCS joint.

The non-linear FEM analysis of different connection lengths of internal connection abutment (내측 연결형 임플란트 지대주의 체결부 길이 변화에 따른 비선형 유한요소법적 응력분석)

  • Lee, Yong-Sang;Kang, Kyoung-Tak;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.2
    • /
    • pp.110-119
    • /
    • 2016
  • Purpose: This study is aimed to assess changes of stress distribution dependent on different connection lengths and placement of the fixture top relative to the ridge crest. Materials and methods: The internal-conical connection implant which has a hexagonal anti-rotation index was used for FEM analysis on stress distribution in accordance with connection length of fixture-abutment. Different connection lengths of 2.5 mm, 3.5 mm, and 4.5 mm were designed respectively with the top of the fixture flush with residual ridge crest level, or 2 mm above. Therefore, a total of 6 models were made for the FEM analysis. The load was 170 N and 30-degree tilted. Results: In all cases, the maximum von Mises stress was located adjacent to the top portion of the fixture and ridge crest in the bone. The longer the connection length was, the lower the maximum von Mises stress was in the fixture, abutment, screw and bone. The reduction rate of the maximum von Mises stress depending on increased connection length was greater in the case of the fixture top at 2 mm above the ridge crest versus flush with the ridge crest. Conclusion: It was found that the longer the connection length, the lower the maximum von Mises stress appears. Furthermore, it will help prevent mechanical or biological complications of implants.

The effects of beam-column connections on behavior of buckling-restrained braced frames

  • Hadianfard, Mohammad Ali;Eskandari, Fateme;JavidSharifi, Behtash
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.309-318
    • /
    • 2018
  • Buckling Restrained Braced (BRB) frames have been widely used as an efficient seismic load resisting system in recent years mostly due to their symmetric and stable hysteretic behavior and significant energy dissipation capacity. In this study, to provide a better understanding of the behavior of BRB frames with various beam-column connections, a numerical study using non-linear finite element (FE) analysis is conducted. All models are implemented in the Abaqus software package following an explicit formulation. Initially, the results of the FE model are verified with experimental data. Then, diverse beam-column connections are modeled for the sake of comparison from the shear capacity, energy dissipation and frame hysteresis behavior points of view until appropriate performance is assessed. The considered connections are divided into three different categories: (1) simple beam-column connections including connection by web angle and connection by seat angle; (2) semi-rigid connection including connection by web and seat angles; and (3) rigid beam-column connections by upper-lower beam plates and beam connections with web and flange splices. Results of the non-linear FE analyses show that these types of beam-column connections have little effect on the maximum story drift and shear capacity of BRB frames. However, the connection type has a significant effect on the amount of energy dissipation and hysteresis behavior of BRB frames. Also, changes in length and thickness of the angles in simple and semi-rigid connections and changes in length and thickness of plates in rigid connections have slight effects (less than 4%) on the overall frame behavior.

Study on flexural capacity of simply supported steel-concrete composite beam

  • Liu, Jing;Ding, Fa-xing;Liu, Xue-mei;Yu, Zhi-wu
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.829-847
    • /
    • 2016
  • This paper investigates the flexural capacity of simply supported steel-concrete composite I beam and box beam under positive bending moment through combined experimental and finite element (FE) modeling. 24 composite beams are included into the experiments and parameters including shear connection degree, transverse reinforcement ratio, section form of girder, diameter of stud and loading way are also considered and investigated. ABAQUS is employed to establish FE models to simulate the behavior of composite beams. The influences of a few key parameters, such as the shear connection degree, stud arrangement, stud diameter, beam length and loading way, on flexural capacity are discussed. In addition, three methods including GB standard, Eurocode 4, and Nie method are also used to estimate the flexural capacity of composite beams and also for comparison with experimental and numerical results. The results indicate that Nie method may provide a better estimation in comparison to other two standards.

Flexural stiffness of steel-concrete composite beam under positive moment

  • Ding, Fa-Xing;Liu, Jing;Liu, Xue-Mei;Guo, Feng-Qi;Jiang, Li-Zhong
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1369-1389
    • /
    • 2016
  • This paper investigates the flexural stiffness of simply supported steel-concrete composite I-beams under positive bending moment through combined experimental, numerical, and different standard methods. 14 composite beams are tested for experimental study and parameters including shear connection degree, transverse and longitudinal reinforcement ratios, loading way are also investigated. ABAQUS is employed to establish finite element (FE) models to simulate the flexural behavior of composite beams. The influences of a few key parameters, such as the shear connection degree, stud arrangement, stud diameter, beam length, loading way, on the flexural stiffness is also studied by parametric study. In addition, three widely used standard methods including GB, AISC, and British standards are used to estimate the flexural stiffness of the composite beams. The results are compared with the experimental and numerical results. The findings have provided comprehensive understanding of the flexural stiffness and the modelling of the composite beams. The results also indicate that GB 50017-2003 could provide better results in comparison to the other standards.

Experimental and numerical study of one-sided branch plate-to-circular hollow section connections

  • Hassan, M.M.;Ramadan, H.;Abdel-Mooty, M.;Mourad, S.A.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.877-895
    • /
    • 2015
  • Connections to circular hollow steel sections (CHS) are considered one of the most complex and time consuming connections in steel construction. Such connections are usually composed of gusset plates welded to the outside of the steel tube or penetrating the steel tube. Design guides, accounting for the effect of connection configuration on the strength of the connection, are not present. This study aims to investigate, through experimental testing and a parametric study, the influence of connection configuration on the strength of one sided branch plate-to-CHS members. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution. A parametric study is performed using the calibrated analytical model to include a wider range of parameters. The study involves 26 numerical analyses of finite element models including parameters of the diameter-to-thickness (D/t) ratio, length of gusset plate, and connection configuration. Accordingly, a modification to the formulas provided by the current design recommendations was suggested to include connection configuration effects for the one sided branch plate-to-CHS members.