• Title/Summary/Keyword: finite buffer capacity

Search Result 25, Processing Time 0.022 seconds

A Study on the Comparison of Storage Sharing Schemes in Queueing System with Finite Capacity Buffer (유한 용량의 버퍼를 가지는 대기행렬에서의 저장공간 공유방안 비교에 관한 연구)

  • Kwon Soo-Tae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.4
    • /
    • pp.15-22
    • /
    • 2004
  • 본 논문의 목적은 유한 저장공간을 가지는 대기행렬 시스템에서 완전공유(Complete Sharing), 완전분할(Complete Partitioning), 최소할당공유(Sharing with Minimum Allocation)와 같은 다양한 저장공간 공유방안들을 비교ㆍ분석하는 것으로, 이를 위하여 먼저 각각의 공유방안에서의 대기행렬 안정상태확률을 효율적으로 구할 수 있는 방법이 제시되었다. 다음으로 각각의 저장공간 공유방안을 특징짓는데 필요한 몇 가지 성질들이 규명되었으며, 이를 토대로 각각의 저장공간 공유방안에 대하여 시스템 성능척도인 생산률들을 도출하는 한편, 이들의 대소관계를 파악하고, 수치실험을 통하여 이를 입증하였다.

Traffic Characteristics and Adaptive model analysis in ATM Network (ATM망의 트래픽 특성과 적응모델 분석)

  • 김영진;김동일
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.4
    • /
    • pp.583-592
    • /
    • 1998
  • In this paper, the cell loss rate is analyzed in terms of the input traffic stream of different speed in ATM network. The cell loss rate is calculated by birth-death process of Leaky-Bucket mechanism as the representative algorithm of usage parameter control. The cell loss rate assumed 2-state MMPP input process to be birth-death process by considering the character of token pool about finite capacity queue. The results from numerical analysis show that the cell loss rate decreases abruptly according to the buffer size increase. The computer simulation by SIMSCRIPT II.5 has been done and compared with on/off input source case to verify the analysis results.

  • PDF

Busy Period Analysis of the Geo/Geo/1/K Queue with a Single Vacation (단일 휴가형 Geo/Geo/1/K 대기행렬의 바쁜 기간 분석)

  • Kim, Kilhwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.91-105
    • /
    • 2019
  • Discrete-time Queueing models are frequently utilized to analyze the performance of computing and communication systems. The length of busy period is one of important performance measures for such systems. In this paper, we consider the busy period of the Geo/Geo/1/K queue with a single vacation. We derive the moments of the length of the busy (idle) period, the number of customers who arrive and enter the system during the busy (idle) period and the number of customers who arrive but are lost due to no vacancies in the system for both early arrival system (EAS) and late arrival system (LAS). In order to do this, recursive equations for the joint probability generating function of the busy period of the Geo/Geo/1/K queue starting with n, 1 ≤ n ≤ K, customers, the number of customers who arrive and enter the system, and arrive but are lost during that busy period are constructed. Using the result of the busy period analysis, we also numerically study differences of various performance measures between EAS and LAS. This numerical study shows that the performance gap between EAS and LAS increases as the system capacity K decrease, and the arrival rate (probability) approaches the service rate (probability). This performance gap also decreases as the vacation rate (probability) decrease, but it does not shrink to zero.

Electrical modelling for thermal behavior and gas response of combustible catalytic sensor (접촉연소식 센서의 열 특성 및 가스반응의 모델링)

  • Lee, Sang-Mun;Song, Kap-Duk;Joo, Byung-Su;Lee, Yun-Su;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.34-39
    • /
    • 2006
  • This study provides the electrical model of combustible catalytic gas sensor. Physical characteristics such as thermal behavior, resistance change were included in this model. The finite element method analysis for sensor device structure showed that the thermal behavior of sensor is expressed in a simple electrical equivalent circuit that consists of a resistor, a capacitor and a current source. This thermal equivalent circuit interfaces with real electrical circuit using two parts. One is 'power to heat' converter. The other is temperature dependent variable resistor. These parts realized with the analog behavior devices of the SPICE library. The gas response tendency was represented from the mass transferring limitation theory and the combustion theory. In this model, Gas concentration that is expressed in voltage at the model, is converted to heat and is flowed to the thermal equivalent circuit. This model is tested in several circuit simulations. The resistance change of device, the delay time due to thermal capacity, the gas responses output voltage that are calculated from SPICE simulations correspond well to real results from measuring in electrical circuits. Also good simulation result can be produced in the more complicated circuit that includes amplifier, bios circiut, buffer part.

Analysis of an M/G/1/K Queueing System with Queue-Length Dependent Service and Arrival Rates (시스템 내 고객 수에 따라 서비스율과 도착율을 조절하는 M/G/1/K 대기행렬의 분석)

  • Choi, Doo-Il;Lim, Dae-Eun
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.27-35
    • /
    • 2015
  • We analyze an M/G/1/K queueing system with queue-length dependent service and arrival rates. There are a single server and a buffer with finite capacity K including a customer in service. The customers are served by a first-come-first-service basis. We put two thresholds $L_1$ and $L_2$($${\geq_-}L_1$$ ) on the buffer. If the queue length at the service initiation epoch is less than the threshold $L_1$, the service time of customers follows $S_1$ with a mean of ${\mu}_1$ and the arrival of customers follows a Poisson process with a rate of ${\lambda}_1$. When the queue length at the service initiation epoch is equal to or greater than $L_1$ and less than $L_2$, the service time is changed to $S_2$ with a mean of $${\mu}_2{\geq_-}{\mu}_1$$. The arrival rate is still ${\lambda}_1$. Finally, if the queue length at the service initiation epoch is greater than $L_2$, the arrival rate of customers are also changed to a value of $${\lambda}_2({\leq_-}{\lambda}_1)$$ and the mean of the service times is ${\mu}_2$. By using the embedded Markov chain method, we derive queue length distribution at departure epochs. We also obtain the queue length distribution at an arbitrary time by the supplementary variable method. Finally, performance measures such as loss probability and mean waiting time are presented.